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People use language creatively. This ability in manipulating conceptual
units, despite seeming a very superficial, maybe even naive and intuitive as-
pect of human linguistic ability, is actually at the core of many properties that
natural language exhibits and should be taken as both the starting point and the
guiding light of any theory aimed at explaining how natural language, broadly
speaking, develops.

Creativity, which we simply define as the ability to reuse existing, small lin-
guistic bits to build up new, unseen blocks, has been in fact mentioned as one
of the most peculiar traits that distinguish human language from animal com-
municating systems, and, more strikingly, it has also been recognized as a skill
that speakers acquire overtime (Bannard et al., 2009): the progress to linguistic
productivity is in fact shown gradually by children, whose competence builds
up on knowledge about specific items and on restricted abstractions before, if
ever, getting to general categories and rules (Goldberg, 2006; Tomasello, 2003).

All theories of language development and use recognize that at the root of
human linguistic ability is their capacity to handle symbolic structures: what
theories do not agree on is the content of people’s linguistic knowledge, on how
this content is acquired and to what extent linguistic creativity is affected by
this stored knowledge (Bannard et al., 2009). Even in recent formulations of the
universal grammar (UG) framework (Hauser et al., 2002), the child’s linguistic
knowledge is described in terms of abstract rules and categories: many studies
have questioned this assumption, showing how the empirical input to which
children are exposed is enough to explain much of their linguistic development,
provided that the child is equipped with the right tools to decode it. The nature
and origin of these tools will be discussed in the following part of this work. One
crucial claim to which we stick throughout this analysis is that such tools need
not to be tailored to linguistic competence, as the generative framework poses,
on the contrary many of the studies that are being mentioned here regard it as
a general-purpose learning mechanism.
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1 Language brick by brick

The latter mentioned group of theories, that broadly fall under the category of
usage-based models, have argued against the two main tenets of generative
models, namely the poverty of the stimulus (Chomksy, 1959; Chomsky, 1968)
and the continuity assumption (Pinker, 1984). Not only has it been shown that
language is a rich-enough signal for learners to pick up on, but also that children
dispose of mechanisms of attention and memory that explain and constrain
many phenomena in language learning.

Once the question of whether infants are able to track statistics in the input
has been reasonably settled (Gómez and Gerken, 2000; Saffran et al., 2006),
interest has shifted to a whole array of new issues concerning how children use
the acquired patterns (Romberg and Saffran, 2010) and about the nature (Per-
ruchet and Pacteau, 1990; Perruchet et al., 2002) and content (Estes et al., 2007;
Yu and Ballard, 2007) of the representations, as well as the nature of the learning
process itself.

1.1 Through the Processing Glass

From a more strict linguistic standpoint, this kind of approaches have con-
tributed to blur the traditional, manichaeistic distinction between lexicon and
syntax (Elman, 2009), the former being the repository of meaning and the
latter being the grammatical device subserving the composition processes. A
number of new architectures have been introduced in order to fill the gap left
by the traditional dualistic model (MacDonald et al., 1994; Goldberg, 2003;
Jackendoff, 2007; Christiansen and Chater, 2016).

This argumentation has been strongly supported also with neural evidence (Ku-
perberg, 2007), mainly coming from ERPs studies: as stated in Kuperberg
(2007), N400 and P600, that had traditional been associated to semantic con-
gruity (Kutas and Hillyard, 1980) and syntactic anomalies (Osterhout and Hol-
comb, 1992; Hagoort et al., 1993) respectively, have been observed also in re-
sponse to a number of different phenomena, including and not limited to real
world expectations (Hagoort et al., 2004), discourse level information (Berkum
et al., 1999; Nieuwland and Van Berkum, 2006), organization of lexical items in
semantic memory (Petten, 1993), and, strikingly, P600 was found also in pure
semantic violations, with no sign of the N400 effect, all suggesting that, even
in a model with two separate streams devoted to semantic memory and combi-
natorial properties respectively, different types of relationships among linguistic
stored items influence each other, in a continuum that points to a much more
cognitively plausible organizing schema.

In a nutshell, processing, rather than abstract linguistic competence, with
its physical and cognitive underpinnings, has gained centrality in linguistic re-
search.
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1.1.1 ...and what linguists found there

This comes with a number of consequences, such as the fact that traditional cat-
egories like grammaticality has to be approached through the lens of cognitive
salience. As it has been shown, it is the notion of typicality the one that turns
out to be cognitively more salient, which is much affected by properties like
frequency of co-occurrence or transitional probabilities, also giving relevance to
the role of prediction in language comprehension and production (McRae and
Matsuki, 2009; Misyak et al., 2010; Lupyan and Clark, 2015). Although ques-
tioned (Huettig, 2015; Huettig and Mani, 2016), prediction has undoubtedly
played a leading role in linguistic research, both at a theoretical (Altmann and
Mirković, 2009) and computational (Elman, 1990; Mikolov et al., 2013) level.
Altmann and Mirković (2009), as Elman (1990) does, distinguish between pre-
diction as a learning task and prediction, or rather anticipation, as an ability
acquired as a by-product of the task: despite the fact that the task in Elman’s
model was modeled on the contingency between the input at time t and the input
at time t+ 1, higher-order contingencies (e.g., between words) have emerged as
well, resulting in a more varied and multi-level (i.e., hierarchical) representation.

This leads to mention the other aspect that distinguishes the usage-based
approached and the generative ones, namely the emphasis that usage-based
models pose on the linear and time-dependent nature of the linguistic signal.
While certainly not denying the utter relevance of hierarchical structures in
language comprehension and production, they advocate that it emerges from
the fact that language must be processed linearly and is subject to constrains
posed by general-purpose memory and cognitive mechanisms. The existence
and facilitatory role of higher-order structures in unquestioned and consistent
with general observations about memory, such as the well known constraints on
our ability to recall stimuli (Miller, 1956).

On the other hand, the emergence of language-like structure from purely lin-
ear signal has been shown in recent experiments such as the one carried by Cor-
nish et al. (2017), where the authors have demonstrated how important aspects
of the sequential structure of language, as its characteristic reusable parts, may
derive from adaptations to the cognitive limitations of human learners and users.
In a letter-string recall task, participants were asked to reproduce a series of 15
string that they had been previously been trained on. The recalled strings were
used as inputs for the next participants, in a series of 10 subjects for chain. The
authors report that, across generations, not only does learnability increase (i.e.,
the overall accuracy of the recalled items in terms of normalized edit distance
increases, and not at the cost of a collapse of the string sets into very short
sequences), but the amount of reuse of chunks also significantly differs from
what one would expect from random strings, and structure similar to natural
language generally emerge. In other to determine the increase of distributional
structure, Cornish et al. adopt a metric which is frequently used in artificial
grammar learning studies: Associative Chunk Strength (ACS) (Knowlton and
Squire, 1994): for a given test sequence consisting of x bigrams, and x − 1
trigrams, ACS is calculated as the relative frequency with which those chunks
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occur in the training items. For example, ACS for the recalled item ZVX in
generation t is calculated as the sum of the frequencies of the fragments ZV, VX
and ZVX in generation t− 1 divided by 3. By means of averaging, the authors
find that the next generation tends to reuse these chunks successfully, and more
so as generations proceed, thus incrementally developing re-usable units.

1.1.2 Meanwhile, in distribution-land

The attempt to explain structural properties of language by means of distri-
butional patterns of co-occurrence has indeed a long-standing history in
linguistic research. Distributional semantics, that has now become one of the
most influential frameworks for the representation and analysis of meaning in
computational linguistics (Erk, 2012; Lenci, 2018), has one of its many roots in
the structuralist distributional analysis such as the works of Harris (1954): a
similar methodology is also at the core of the first attempts to identify the items
and structures in children’s language, such as pivot grammar (Braine, 1963).

Linguistic distributional information, besides being a quantitative method
for semantic analysis, could as well be regarded as a cognitive hypothesis
about the form and origin of semantic representations (Miller and Charles, 1991;
Lenci, 2008), an hypothesis that has been tested also in language acquisition
studies (Twomey et al., 2014, 2016).

What Miller and Charles claims, and Lenci underlines is, in fact, that:

Knowing how to use words is a basic component of knowing a lan-
guage, and how that component is acquired is a central question for
linguists and cognitive psychologists alike. The search for an answer
can begin with the cogent assumption that people learn how to use
words by observing how words are used. And because words are used
together in phrases and sentences, this starting assumption directs
attention immediately to the importance of context.

This idea that knowledge is primarily knowledge of use is widespread in many
other theories, and in line with the claim by Tomasello, who frames linguistic
competence in terms of

the mastery of a structured inventory of meaningful linguistic con-
structions

Although neither pivot grammar nor the subsequent attempts have proven to
be able to explain children’s language acquisition, some of the fundamental prin-
ciples permeated into subsequent literature, in particular the idea that the child
is able to make his or her own abstractions from exposure to adult behaviors.
What’s interesting is that these patterns of learning have survived especially in
the non language-related research about children’s cognitive development.

In particular, statistical learning (SL), which had initially focused on
word learning (Reber, 1967; Saffran et al., 1996), has extended to treating the
processing of regularities in sensory input in general, therefore offering a more
comprehensive theory of information processing (Armstrong et al., 2017). As
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Armstrong et al. point out, the outcome of statistical learning is not constrained
to a representation of the statistics in the input, but rather it claims that experi-
encers possess the cognitive abilities to take track of distributional patterns, and
that this contributed to shaping expectations and behavioral responses, much
alike to what distributional semantic theories claim.

2 Process global, utter local

As use is the main aspect that has to be factored in, from our standpoint this
cannot be accomplished without an overall model of information processing. A
series of consequences depend on bringing processing back at the core of distribu-
tional linguistic theory: it undoubtedly affects decisions concerning the nature
of linguistic conceptualization and abstractions and, most importantly, the pro-
cessing mechanisms cannot be possibly faced from a pure linguistic standpoint,
as it has been shown how general and unsupervised learning mechanisms are
also active in language.

Some important remarks need to be mentioned about this: the claim for a
domain-general ability such as statistical learning (or implicit statistical learn-
ing, as Christiansen (2018) frames it) does not rule out the possibility of modality-
and stimulus- specific constraints Frost et al. (2015). As a matter of fact, the
evicence for cross-modality transfer learning is scarce (Redington and Chater,
1996; Gomez et al., 2000), while the evidence persistently shows patterns of
modality specificity or even stimulus specificity (Johansson, 2009) learning. Al-
though this might seem to undermine the claim of SL as a unitary learning
system, as Frost et al. note providing an operational definition of domain gen-
erality, the two aspect are better explained when seen together: while varying
with respect to different sets of modality-specific constraints, the computational
principles by which the learning happens are shared, and, consistently with neu-
robiological findings, some portion of the neuronal system are tied to a given
modality while others form a multi-domain cognitive system that modulates or
operates on inputs provided in form of modality-specific representations.

With respect to the general underlying computational mechanisms,
Thiessen (2017) distinguishes between two distinct groups, aimed at detecting
conditional and distributional regularities respectively. Conditional regulari-
ties are used to inform a chunk-based memory processes that ultimately stores
exemplars, while distributional regularities, that refer to frequency and vari-
ability of the found exemplars in the input, are employed to capture central
tendencies and group elements into categories. Thiessen (2017) argues how
taking memory-based perspective on the topic is helpful in connecting both
sides of statistical learning in the same framework, as it allows to focus on pro-
cesses that are endemic to memory, such as activation, decay, interference and
prototype formation. This kind of approach is also able to account for devel-
opmental changes in learning outcomes: as memory decays when getting older,
the way the input is represented and the nature of this representation is likely
to change with age. Earlier stages of learning could be slower but more flexible
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to adapt to new environments, while later stages gain stability and efficiency
but are also more constrained by regularities of the environment (Thiessen and
Saffran, 2003).

Thiessen et al. (2013), much like Christiansen and Chater (2016), highlight
the necessity for a mechanism that is able to take into account for two distinct
tendencies, namely an extraction process that supports chunking and an inte-
gration process that supports the aggregation of exemplars in coherent clusters,
mediated by an attention mechanism.

One of the major consequences of this approach is dealing with the rela-
tion between item-based and categorical knowledge: one of the basic tenets of
statistical learning and usage-based models more broadly is the fact that indi-
vidual episodes can be integrated into more abstract representations that echo
the statistical distributional properties of the input. This process of incremen-
tal abstraction implies a certain amount of loss of detail about the individual
episodes. Altmann (2017) offers an operationalized definition of the abstrac-
tion process as

accumulation of experience across trials which leads to generalizable
knowledge (the ‘correct’ object-label mappings) not available to the
organism at the start of this accumulation, and in which episode-
specific details (including non-systematic, accidental, co-occurrences,
including the ‘incorrect’ object-label pairings as well as the object-
object and label-label pairings) become less salient than more sys-
tematic details, reflecting structure (or regularities) across episodes.

2.1 The word, violà l’ennemi

Altmann also offers a review of computational models of memory that embody
principles relevant to the exemplar/schema distinction (Lund and Burgess, 1996;
Elman, 1990; Jones and Mewhort, 2007; Landauer and Dumais, 1997; Altmann
and Mirković, 2009), and they further argue that such models, including Elman’s
SRN, lack of a specific tool for modeling the relationship between episodic and
semantic memory, which is instead a feature of neurobiologically-inspired mod-
els that rely on complementary learning systems (McClelland et al., 1995;
Schapiro et al., 2017) (CLS): different structures, namely hippocampal struc-
tures and neocortex, support rapid encoding of different instances and slow
recognition of regularities respectively. The difference between the two differ-
ent kinds of semantic memory is however not sharp, and neuronal structures
themselves have shown support for a gradient of abstraction.

The idea of having different levels of abstraction with different levels of rep-
resentation is directly reflected in linguistic items such as constructions, where
fully instantiated elements coexist with partially filled structures. One of the
areas where the co-existence of some sort of deterministic symbolic rules and
subsymbolic mechanisms has emerged and has been widely explored is that of
morphological structures (Bybee, 1995; Hay and Baayen, 2005), with frequency
of exposure playing a key role in the organization and recognition of relevant
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morphological units and their combination (Bybee and McClelland, 2005). At
higher levels than words various levels of idiomaticity and unpredictability have
been recognized (e.g., multiword expressions and collocations), but they are
still widely treated as special cases that depart from standard compositional-
ity. From a computational perspective, even though the presence of subword
and idiosyncratic units have proven to be effective in performance (Bojanowski
et al., 2017; Ramisch and Villavicencio, 2018; Salle and Villavicencio, 2018),
a more comprehensive and linguistically informed computational approach to
the coexistence of different levels of segmentation is still missing. Similarly,
as more modern models, especially in the artificial neural network trend, tend
to be less and less supervised and agnostic about the linguistic items they are
modeling (Kalchbrenner et al., 2014), some insights have been provided about
the amount of structural knowledge (i.e., knowledge about the underlying gram-
matical structure of the text used to train the model, rather than its content in
terms of words) injected into the produced semantic representations (Shi et al.,
2016; Belinkov et al., 2017a,b; Blevins et al., 2018). In this landscape, the suc-
cess of models like BERT (Devlin et al., 2018), for example, paves the way for a
new generation of distributional semantic models and sheds light on a different
formulation of the problem of learning form-meaning mappings.

Learning, also irrespective of the linguistic level, entails in fact two different
aspects:

• finding (i.e., segmenting) the most relevant units to encode information

• representing (i.e., compressing) information so as to make is efficient to
store and to reproduce

The key issue is that these two processes should be mutually informative to one
another and should be both considered when modeling or analyzing language.

3 Computational models for Statistical Learn-
ing

3.1 PARSER

PARSER (Perruchet and Vinter, 1998) is among the first attempts to give a
computational account of word segmentation. The aim of the authors is to
show how parsing emerges as a natural consequence of the on-line attentional
processing of the input, thanks to basic laws of memory and associative learn-
ing. They argue that chunking is an ubiquitous phenomenon, which people use
to decompose a complex sequence of elements into simpler processing primi-
tives: their aim is therefore to explain how chunks turn out to match linguistic
items such as words. Perruchet et al. hypothesis is that the parsing emerges
as a consequence of the organization of the cognitive system, which is char-
acterized by the interplay of two principles: the fact that perception shapes
internal representations, meaning that primitives that are perceived within one
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attentional focus as a consequence of their proximity become the constituents of
one new representational unit, and the fact that internal representations guide
perception, meaning that perception involves an active coding of the incoming
information and this coding schema is constrained by the perceiver’s already
acquired knowledge. The frequency of repetition of certain chunks is then what
reinforces the representation, and leads to lasting chunks that match words or
subwords rather than between-words segments.

PARSER is initialized with an alphabet (i.e., a mental lexicon) of primitives
(i.e., syllables), each assigned with a weight that gets updated in order to reflect
the person’s familiarity with the item. At each timestep, also processes of
forgetting and retroactive interference take place.

The results obtained match well human performances on artificial grammars,
and the authors claim that this is due to principles general enough to scale up to
natural language experiments. However, the application of such a mechanisms
to naturalistic data has proven to be non-trivial.

The relevance of the PARSER model for the subsequent works in the field
of statistical learning is out of question. The assumptions made (i.e., taking
syllables as primitives and the idea that material is perceived as a succession
of small and disjunctive chunks composed of a few primitives) is debatable:
it seems reasonable to suppose that such primitives, provided they exist and
people rely on them for language processing, lie at a much higher and more
abstract level than linguistic, symbolic material. Moreover, although forgetting
is implemented in the model, the representation of the chunks remains discrete
throughout the whole process, without any form of abstraction or compression
of the encountered information.

3.2 CAPPUCCINO

The aim of the CAPPUCCINO (i.e., Comprehension and Production Performed
Using Chunks Computed Incrementally, Non-categorically and On-line) model
of language acquisition, introduced in McCauley and Christiansen (2011), is to
provide a test of the assumption that children’s language use involves explic-
itly stored chunks. It has a number of features that mirror key psychological
properties, such as incremental learning from naturalistic input, on-line pro-
cessing, simple statistical measures that we know children are able to track, and
comprehension and production are taken into account at once.

In practice, the models builds an inventory of chunks (i.e., a chunkatory)
used to segment phrases, and that are afterwards used to reproduce children’s
utterances. The model relies on backward transitional probabilities (BTPs) to
discover chunks: high BTPs are taken as a cue that words belong to the same
phrase, while low BTPs mark phrase boundaries. Utterances are processed
on a word-by-word basis and, when BTP is higher than the running average,
the current word-pair is grouped together as a part of a chunk; whereas when
the BTP falls below the running average, a chunk is created and added to the
chunkatory. The key aspect is that items of the chunkatory are in turn used to
assist processing on the same word-to-word basis.
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The major standpoint of McCauley and Christiansen is however that, given
better performances of the model to fit artificial grammar learning data when
exposed to words as opposed to lexical categories, knowledge of concrete words
and chunks may be more important to early language acquisition than abstract
rules operating over word classes.

While this methodology has proven itself to be viable, it heavily relies on
previous segmentation of the text in words, thus making it impossible to account
for a greater number of structures such as subword chunks.

3.3 iMinerva

iMinerva, short for Integrative Minerva, was introduced in Thiessen and Pavlik Jr
(2013) with the aim of understanding whether domain-general principles (i.e.,
activation of similar memories, decay, integration, and abstraction) can account
for a variety of linguistically relevant learning tasks: the authors test their
model against three fairly different tasks, namely category learning reproducing
the patterns found in Maye et al. (2002), simulating the effects of distribution
of exemplars in children’s use of categorial distrinctions (Thiessen, 2007) in
word learning, and the effect of variability in non-adjacent dependency learn-
ing (Gomez, 2002).

The dissimilarity of the three tasks, along with the fact that iMinerva em-
ploys general-purpose memory mechanisms, suggest the possibility that the un-
derlying human processes could be explainable through the basic operations
that iMinerva performs, in particular comparing between current and prior ex-
emplars, and integrating them into a representation that is sensitive to the
central tendencies of prior experience.

One limitation, highlighted by the authors themselves, concerns the fact
that iMinerva does not attempt to model production, nor infants’ behavioral
responses. Instead, iMinerva is focused on identifying the representations un-
derlying performance in learning tasks and the processes that lead to the for-
mation of those representations. Related to this issue is the fact that iMinerva
does not chunk the input either, but relies on the provided segmentation, tai-
lored to the task. In other words, it is just a model of distributional statistical
learning, while it sets aside the issue of conditional statistical learning. The two
processes, as Thiessen et al. (2013) argues, cannot be truly disentangled and are
mutually informative.

3.4 R-Grams

A quite different approach to the issue of chunking the input in a set of rele-
vant linguistic units is introduced in Ekgren et al. (2018). Although their aim
is probably very far from that of the previous studies, we find it nonetheless
interesting to mention here, as it shares some of the main features of the previ-
ous studies (i.e., being completely usage-based, input-driven and unsupervised),
while showing some of the traits of the computational linguistic tradition, as for
example a greater scalability to larger amounts of data.
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Another interesting feature of their model is that it is based on the Re-Pair
algorithm (Moffat and Larsson, 2000), a compression algorithm in the family
of dictionary-based compression. The idea that the processes of extraction of
more and more abstract chunks or schemas from the input must involve a no-
tion of compression is quite widespread in the statistical learning literature and
highlighted also in Christiansen and Chater (2016).

The chunk identification procedure is pretty straightforward, and involves
just a few steps, namely, given an initial alphabet of symbols, i. find the pair ab
that occurs most frequently in text, ii.) replace all occurrences of ab with a new
symbol A, iii.) add the rule A → ab in the grammar, iv.) repeat until no pair
occurs more than a defined threshold or the vocabulary size exceeds memory
limits.

The implementation, as is, has a number of drawbacks, such as the fact that
throughout the whole process the entire text must be maintained available,
and the inability to account for non-adjacent chunks. Furthermore, the model
presents a mixture of grammar rules induction and fragments storing: it remains
therefore unclear how a subsequent parsing phase would be performed.

3.5 The issue of non-adjacent chunks

One of the major issues that chunking models have to face is the existence of
non-adjacent structures with very variable aspect on the surface. It is the
case of, for example, the progressive (e.g., is running) and perfective construction
(e.g., has stopped) in English, that is shaped as set of discontinuous chunks
consisting of a form of the verb to be or to have respectively, an empty slot
with some high level constraint at the level of linguistic category (i.e., it must
be filled by a verb) and the appropriate morphological mark (e.g., the -ing
ending for the progressive construction). The same holds for structures like the
correlative construction (i.e., the X-er, the Y-er, as in the more, the merrier),
or even more subtle things like agreement throughout the sentence or event-
level dependencies: while it is intuitive that we, as speakers, are able to detect
this kind of discontinuous patterns, evidence coming primarily from artificial
grammar learning is not so strong about it.

A seminal work on this issue (Gomez, 2002) underlined the striking role
played by internal variability: while discrimination was poor in low-variability
conditions, it significantly increased in high-variability conditions, going towards
the principle of reduction of uncertainty (Gibson, 1991). When transitional
probabilities are high, adjacent elements are perceived as invariant, whereas
when high variability disrupts adjacent dependencies, learners tend to seek al-
ternative sources of predictability.

Newport and Aslin (2004) showed that adult learners are highly selective in
the types of non-adjacent regularities they are readily able to compute: in par-
ticular, they found that non-adjacent syllable regularities are extremely hard to
acquire, while segment regularities (i.e., co-occurrences of sets of consonants like
roots of semitic languages, but note that their results also applied so segments
made up of vowels) are much easier, and provide various possible explanation
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to this, namely element similarity (i.e., homogeneity of the elements forming
the pattern), or the interaction between distance and elements’ representations.

Such results are further confirmed by Gómez and Maye (2005), that also
investigate differences in the detection of nonadjacent dependencies in respect
of the different development stages of their subjects and in different conditions
of variability (i.e., set-size, in stings like aXb, the pool from which the element X
was drawn varied in size). In spite of the nonadjacent elements being always per-
fectly predictable, learners showed to be able to track the less reliable adjacent
probabilities in all but the highest set-size conditions (| {X in aXb} | = 18, 24),
showing to be attracted by adjacent probabilities also if it would have been more
useful to track the nonadjacent ones.

An important and related point raised in Mintz (2002, 2003) and Onnis
et al. (2004) about the results on variability provided by Gomez (2002), is how
high variability of context may be instrumental in the identification of frequent
frames, that lead in turn to inferences on syntactic categories.

Gómez and Maye (2005) also mention that results such as the ones reported
in Peña et al. (2002), which are apparently at odds with the aforementioned
studies, can be explained in light of some cues in the stimuli that Peña et al.
did not control for, although they recognize that the existence of two different
learning mechanisms, one pertaining to component discovery and one pertaining
to structural regularities discovery, is still not ruled out by the current literature.
Peña et al. (2002) argue in fact, in a more generative fashion, that, while the
process of chunking the linguistic stream relies on statistical computations, the
process of projecting generalizations on grammatical regularities that go beyond
stored items in memory could be non statistical in nature.

The discovery and treatment of non-adjacent dependencies have therefore
a central role in the theories that subserve language comprehension and pro-
duction. Be they rules or actual chunks, and be they managed by a dedicated
mechanism or a general statistical process, they embody the building blocks
that bridge the traditional lexical level to the sentence level, being therefore
central to the issues of linguistic creativity and compositionality.

4 Connectionist approaches in statistical learn-
ing and usage-based language models

Computational connectionism has provided a solid framework to implement
many of the theories of statistical learning and grammar induction. The ap-
proaches are so many and so varied that it would be out of the scope of this
work to have a proper review of them. We’ve already mentioned the path-
breaking study of Elman (1990), which has also been widely discussed in the
subsequent literature.

In the following paragraphs we will therefore summarize a few models that
have been proposed concerning statistical learning and chunking, and introduce
the spiking paradigm, that has been successfully applied to auditory and visual
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tasks and shows interesting properties with respect to its cognitive plausibility.

4.1 TRACX2

The TRACX2 model (Mareschal and French, 2017) tackles the issue of statistical
learning by arguing that both transitional probabilities learning and chunking
can coexist in one system, as it is one single mechanism that underlies sequantial
learning, Hebbian-style learning.

In a previous version of the model (French et al., 2011), the authors had
shown that a connectionist autoencoder, augmented with conditional recurrence,
could extract chunks from a stream, successfully capturing data from the adult
and infant auditory statistical learning literature.

Both TRACX and TRACX2 consist of an autoencoder with two identical
banks of inputs units, two identical banks of output units (each of which is the
same size as each of the banks of input units), and a bank of hidden units with
the same dimensions as one of the input/output unit banks: however, while in
TRACX a threshold value indicating successful recognition of the current pair
of input elements was used to decide whether the input on the right bank was
being transferred to the left bank or not, TRACX2 removes the use of an all-or-
nothing threshold, making the contribution of the hidden-unit activation vector
to the left bank of input units graded and depending on the level of learning
already achieved.

The key aspect of TRACX2 is that it is encoding and recognizing previously
seen chunks of information, rather than just internalizing the overall statistical
structure of the sequence. This fits with the idea that infant statistical learning
can be explained through a memory-based chunking model, and also endorses
the fact that sequence processing can emerge from the application of fairly
general associative mechanisms.

4.2 Reconciling episodic memory with statistical learning

Moving to a fairly different scenario, the work of Schapiro et al. (2017) aims
at modeling the function of the hippocampus, reconciling its rapid learning
function with the idea that it specializes in memorizing individual episodes.

Therefore, the authors exposed a neural network model that instantiates
known properties of hippocampal projections and subfields to sequences of items
with temporal regularities and asked whether it is possible for the hippocampus
to handle both statistical learning and memorization of individual episodes.

The model they are providing is particularly relevant in the Complemen-
tary Learning Systems (CLS) theory (McClelland et al., 1995), which provides
itself a computational framework for understanding the distinct roles that the
hippocampus and neocortex play in representing memories. The theory posits
the existence of different systems: the hippocampus, with high learning rate and
sparse, non-overlapping representations to quickly store memory traces for re-
cent experience, and cortical areas, informed by the hippocampus during offline
periods, with slow learning rate and overlapping representations that allow to
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represent regularities across experiences. It has been claimed, however, that the
hippocampus is also involved in rapid statistical learning (Schapiro and Turk-
Browne, 2015), that requires learning regularities over a short period of time
(e.g., minutes), posing a challenge for the theories that the theories that view
the hippocampus as solely supporting memory for distinct episodes.

Schapiro et al. therefore investigate the role of hippocampal structures across
different subfields, and do this through three learning paradigms that require
the extraction of regularities on different timescales: in particular, they test
classic statistical learning, in which a continuous sequence of items is presented
to participants during passive viewing or a cover task, community structure,
which still involves a continuous sequence of items but with uninformative tran-
sitional probabilities among adjacent items and therefore requiring sensitivity to
higher-level associations, and a third class of tasks including transitive inference,
acquired equivalence, and associative inference that also require indirect associ-
ations, this time not based on segmentation but rather on rapid integration of
experience over time in order to uncover regularities.

Their results suggest a modification of the CLS framework, allowing for
both novel episodic and novel statistical information to be quickly learned in
the hippocampus, but different substructures subserve different functions, thus
reconciling the trade-off between episodic memory and statistical learning by
suggesting that the hippocampus itself contains complementary learning sys-
tems.

4.3 Spiking neural networks

Artificial Neural Networks (ANN), although having represented a sensible paradigm
shift in many communities and having proven themselves as extremely powerful
modelling tools, have also been accused of biological implausibility for a num-
ber of reasons, most commonly the fact that they involve non-local transfer of
real-valued errors and weights, while biological neuronal systems assume a kind
of firing rate code for transmitting information throughout the brain.

According to the previous section, also another source of implausibility has
to be dealt with: in neural network models, regularities are usually and most
effectively extracted through overlapping representations, but as the Schapiro
et al. (2017) model and CLS theory have shown, non-overlapping representa-
tions are equally valuable tools for learning. In other words, while most neural
network models seek generalization through the creation of prototypical items,
but exemplars require modeling as well.

Spiking Neural Networks represent an emerging computational framework
that could help overcome these drawbacks (Maass, 1997), moreover naturally
incorporating the concept of time and therefore promising to be valuable can-
didates to model phenomena such as the linguistic ones, whose theorized hier-
archical structures are highly constrained in a stream that develops over time.

Just like traditional ANNs, Spiking Neural Networks are directed graphs
made of nodes (neurons) and edges (synapses). What differentiates the two
frameworks is that SNNs operate using spikes, discrete events that take place
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at points in time, rather than continuous values, that are produced in ANNs
by the activation function. In the biological metaphor, each neuron of a SNN
has a time-dependent variable that serves as the biological membrane, which
integrates the received inputs over a portion of the stream and determines the
response produced by the neuron (i.e., it regulates the production of a spike).
Various models have been proposed for the neuron, the simplest being the Leaky
integrate-and-fire (LIF) model.

Also supervised learning algorithms such as the well-known backpropagation
are to be revised for the SNN framework: differently from ANNs, Spiking Neural
Networks encode input sequences of spikes in output sequences of spikes (Jeong,
2018), thus opening the path for different solutions to learning, some of them
implementing bio-inspired local training rules.

4.3.1 Neuronal structure

As an example1, we will consider the case of a neuron involving just one state
variable, which represents the membrane potential, similarly to the LIF model (De-
lorme et al., 1999), which is among the most popular neuron models.

The idea is that, over time, the value of this activation potential increases
when a spike is received and decays during the inter-spike intervals. The state
variable is therefore expressed as follows:

u(t) = u0 + a

∫ t

0

D(s) · w · σ(t− s)ds (1)

where u0 and a are the initial membrane potential and a positive constant
respectively, D(s) is a linear filter, w the synaptic weight and σ a series of

N input spikes, namely σ(t) =
∑N

i=1 δ(t − ti). In other words, the state of the
membrane at time t is given by its initial state u0 plus some additional potential
due to the received spike stream. A spike is then elicited at time t if the value
of u(t) reaches a threshold uth, and the potential is consequently reset to u0.

The function of the linear filter D allows for modulations in how the inte-
gration over spikes works, therefore mimicking memory loss.

The weight w characterizes the synapse as excitatory or inibitory
More complex models are of course possible, such as the ones that take

into consideration excitatory post-synaptic current or account for other specific
biological aspects (see for example Izhikevich (2003)).

4.3.2 Encoding the input

The brain encodes external, analog information into electrical pulses (i.e., spikes):
the schemes used to encode real data into spike streams are therefore a relevant
aspect of the SNN architecture (Kasabov, 2018).

1We refer to Jeong (2018) notation for this section.
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Rate coding implies encoding a sequence of spikes based on the average
number of spikes (or spikes count) over time i.e. how many spikes are emitted
within a time window. In literature, the expression rate coding is used to refer to
three different notions, that reflect three different views of the code: an average
over time, or an average over a population of neurons, or an average over several
experimental repetitions.

Temporal coding is mostly used to encode real value data (e.g., sound,
pixel images, temperature...) into spike sequences. A spike is generated only if
a change in the input data occurs beyond a threshold. An example is a code
where for each neuron the timing of the first spike after the reference signal
contains all information about the new stimulus: firing shortly after the refer-
ence signal means a strong stimulation, while delaying the firing would signal a
weaker stimulation (Thorpe et al., 1996). Similarly to rate coding, this strategy
can be viewed at the population level, for example distributing the input into
multiple neurons with overlapping receptive fields, represented as a continuous
function (e.g., Gaussian).

Many variants are discussed in Kasabov (2018), and it is hard to draw a
clear boundary between rate based codes and pulse-based temporal codes. As
pointed out in Gerstner and Kistler (2002), the minimum requirement for any
code is that it is able to offer the possibility to react quickly to changes in the
input, in order to march behavioral reaction times.

4.3.3 Learning

As in traditional ANNs, the learning is performed by adjusting the weights of
the synapses. Differently from standard ANNs, in SNNs learning is local both
with respect to the neighborhood of the synapse and in time, and in particular
the weight of the synapse connecting two neurons is adjusted following various
variants of the spike-timing-dependent plasticity (STDP) algorithm, which are
largely inspired by the basic Hebb rule of learning, well summarized in its most
popular formulation ”cells that fire together wire together”.

Another difference to consider is that the spike trains are expressed as sums
of Dirac delta functions (Tavanaei et al., 2018), that make derivative optimiza-
tion such as backpropagation difficult to apply. Therefore, different solutions
have to be implemented for multi-layered networks.

Unsupervised learning via STDP
The idea of STDP is that the temporal relation between the pre- and post-

synaptic spike influences the strength of the connection. In particular, if the
post-synaptic neuron fires shortly after the pre-synaptic one, the synapse is
strenghtened, while if the opposite happens the relation is considered spuri-
ous and the connection is depressed. An example is reported in the following
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equation2:

∆w =

{
Ae
−(‖tpre−tpost‖)

τ tpre − tpost ≤ 0, A > 0

Be
−(‖tpre−tpost‖)

τ tpre − tpost > 0, B < 0
(2)

where A,B are constant parameters indicating learning rates and τ is the tem-
poral window.

Supervised learning
In SNNs, the objective function that is minimized during the learning is the

so-called readout error, a cost function that capures the difference between the
desired and output spike streams.

Here we cite an example of updating rules which is among the most intu-
itive ones, namely the one of the ReSuMe (remote supervised learning) algo-
rithm (Ponulak and Kasiński, 2010), that is an adaptation of the standard Delta
rule:

∆w = (yd − y0)x (3)

where x is the pre-synaptic input and yd and y0 are the desired and observed
outputs respectively. When reformulated for SNNs, the rule for training excita-
tory synapses takes the form:

∆w = ∆wSTDP (Sin, Sd) + ∆waSTDP (Sin, S0) (4)

where ∆wSTDP is a function of the correlation of the presynaptic and desired
spike trains, while ∆waSTDP depends on presynaptic and observed spike trains.

In another model with a similar framework, the Chronotron (Florian, 2012),
the Victor-Purpura (VP) distance metric (similar to Levenshtein distance) is
introduced in order to compute the difference between two spike trains, in terms
of the minimum cost of transforming one spike train into the other by creating,
removing or moving spikes. This was made fully differentiable and therefore
used as a cost function.

4.3.4 Deep Learning and applications

An accurate and extensive review of the most recent deep learning models in-
volving SNNs is reported in Tavanaei et al. (2018).

The general picture has seen big strides in the SNN framework in the most
recent years, however, in spite of overall good and competitve results, the tasks
that have been explored are still very few, and researchers have mostly focused
on the Modified National Institute of Stan- dards and Technology (MNIST)
dataset (LeCun et al., 2010).

Moreover, the approaches have mainly focused on adapting backpropagation
to the SNN architechture, while upscaling biologically inspired algorithms such
as STPD to more complex architectures still represents a challenge.

A special mention is needed for Liquid State Machines (LSM) architech-
tures (Maass et al., 2002), born natively with spiking neurons not to the purpose

2We refer to Tavanaei et al. (2018) notation for this section.
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of modeling a specific task but rather of reproducing the dynamics of cortical
circuits.

One of the few applications of SNN to language modeling can be found
in Costa et al. (2017), who attempted to adapt the architecture of a conven-
tional LSTM to be a plausible model of a cortical microcircuit, involving LIF
neurons. Moreover, the gating operations, which are multiplicative in a tra-
ditional LSTM, were replaced by substractions (hence, subtractive LSTM or
subLSTM ), which are closer to biological functions. Although not outperform-
ing LSTMs, subLSTMs achieved a comparable level of perplexity in a simple
word-prediction task, therefore opening up promising paths for future research.

5 Bridging the gap

The picture we tried to draw throughout this brief summary leaves many ques-
tions unanswered. First and foremost, the issue of the emergence of non-adjacent
dependencies still represents a puzzle both from a linguistic and computational
point of view. Moreover, it appears to be strictly tied to two aspects that cannot
be disentangled or detached from linguistic research, namely the time-dependent
nature of the linguistic material, and the constrained posed on it by cognitive
processing and human memory.

The question about how do we attach meaning representations to linguistic
symbols has been central to usage-based models of language acquisition. We
however think that the same question could be posed in a different fashion, in
order to be better integrated with the statistical learning and more cognitive-
based community: how do we identify the linguistic structures that are better
suited, or more likely to cue the desired meaning?

In other words, the problem of segmentation, which has been largely taken
for granted by computational semanticists, could be more deeply investigated.
At the same time, research on statistical learning and chunking has mainly
focused on symbols, leaving aside issues concerning the function that the chunks
have in the utterance.

Building meaning representations and segmenting the input are in fact deeply
related and mutually informative tasks, and tackling the two issues together
would could be beneficial as well as lead to a model that has a more cognitively
informed approach to the process of acquisition of linguistic structures.

References

Gerry TM Altmann. 2017. Abstraction and generalization in statistical learn-
ing: implications for the relationship between semantic types and episodic
tokens. Philosophical Transactions of the Royal Society B: Biological Sci-
ences, 372(1711):20160060.

Gerry TM Altmann and Jelena Mirković. 2009. Incrementality and prediction
in human sentence processing. Cognitive science, 33(4):583–609.

17



Blair C Armstrong, Ram Frost, and Morten H Christiansen. 2017. The long
road of statistical learning research: past, present and future. Philosophical
Transactions of the Royal Society B: Biological Sciences, 372(1711).

Colin Bannard, Elena Lieven, and Michael Tomasello. 2009. Modeling chil-
dren’s early grammatical knowledge. Proceedings of the National Academy of
Sciences, 106(41):17284–17289.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James
Glass. 2017a. What do neural machine translation models learn about mor-
phology? In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 861–872.

Yonatan Belinkov, Llúıs Màrquez, Hassan Sajjad, Nadir Durrani, Fahim Dalvi,
and James Glass. 2017b. Evaluating layers of representation in neural machine
translation on part-of-speech and semantic tagging tasks. In Proceedings of
the Eighth International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1–10.

Jos JA van Berkum, Peter Hagoort, and Colin M Brown. 1999. Semantic in-
tegration in sentences and discourse: Evidence from the n400. Journal of
cognitive neuroscience, 11(6):657–671.

Terra Blevins, Omer Levy, and Luke Zettlemoyer. 2018. Deep rnns encode
soft hierarchical syntax. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pages
14–19.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching word vectors with subword information. Transactions of the Asso-
ciation for Computational Linguistics, 5:135–146.

MDS Braine. 1963. The ontogeny of english phrase structure. Language, 39:1–
13.

Joan Bybee. 1995. Regular morphology and the lexicon. Language and cognitive
processes, 10(5):425–455.

Joan Bybee and James L McClelland. 2005. Alternatives to the combinatorial
paradigm of linguistic theory based on domain general principles of human
cognition. The linguistic review, 22(2-4):381–410.

Noam Chomksy. 1959. Review of skinner’s verbal behaviour. Language, 35:26–
58.

Noam Chomsky. 1968. Language and Mind. New York: Harcourt Brace Jo-
vanovich.

M. H. Christiansen. 2018. Implicit statistical learning: A tale of two literatures.
Topics in cognitive science.

18



Morten H Christiansen and Nick Chater. 2016. The now-or-never bottleneck:
A fundamental constraint on language. Behavioral and Brain Sciences, 39.

Hannah Cornish, Rick Dale, Simon Kirby, and Morten H Christiansen. 2017.
Sequence memory constraints give rise to language-like structure through it-
erated learning. PloS one, 12(1):e0168532.

Rui Costa, Ioannis Alexandros Assael, Brendan Shillingford, Nando de Freitas,
and TIm Vogels. 2017. Cortical microcircuits as gated-recurrent neural net-
works. In Advances in neural information processing systems, pages 272–283.

Arnaud Delorme, Jacques Gautrais, Rufin Van Rullen, and Simon Thorpe. 1999.
Spikenet: A simulator for modeling large networks of integrate and fire neu-
rons. Neurocomputing, 26:989–996.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018.
Bert: Pre-training of deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ariel Ekgren, Amaru Cuba Gyllensten, and Magnus Sahlgren. 2018. R-grams:
Unsupervised learning of semantic units in natural language. arXiv preprint
arXiv:1808.04670.

Jeffrey L Elman. 1990. Finding structure in time. Cognitive science, 14(2):179–
211.

Jeffrey L Elman. 2009. On the meaning of words and dinosaur bones: Lexical
knowledge without a lexicon. Cognitive science, 33(4):547–582.

Katrin Erk. 2012. Vector space models of word meaning and phrase meaning:
A survey. Language and Linguistics Compass, 6(10):635–653.

Katharine Graf Estes, Julia L Evans, Martha W Alibali, and Jenny R Saffran.
2007. Can infants map meaning to newly segmented words? statistical seg-
mentation and word learning. Psychological science, 18(3):254–260.
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