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1 | Introduction

Linguistic competence entails the ability to understand and produce an unbounded
number of novel, complex linguistic expressions.
The comprehension of such expressions involves the construction of a semantic
representation that, following a common statement for the so-called principle of
compositionality, is said to be a function of the meaning of its parts and their syn-
tactic modes of combination.

These representations are needed to support human reasoning about the event
or situation that is cued by language use. Consider for instance the different im-
plications of sentences 1 and 2):

(1) After the landing, the pilot switched off the engine.

(2) After the rally, the pilot switched off the engine.

While the two sentences share the proposition the pilot switched off the engine,
we are likely to infer different things, for instance, about the engine that is being
swichted-off (i.e., the fact that in sentence 1 it refers to an airplane while in sen-
tence 2 it refers to a car). Other aspects are involved as well: different inferences
could be made upon which other participants are expected to perform further ac-
tions, for example cabin crew, control tower, passengers might be involved in the
first scenario, but are definitely cut out from the second. Words like landing and
rally cue in fact very different situations in the two sentences, creating different
sets of expectations about the described event.

We expect our computational resources to be able to model such phenomena,
that make up the very core of language use.
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The aim of this work is to investigate the use of distributional methods in a model
of compositional meaning that is both linguistically motivated and cognitively
inspired.

Chapter 2 provides a brief overwiev of Distributional Semantics, a usage
based model of meaning that has been widely applied to cognitive tasks, such as
judgements on semantic similarity or identification of semantic or analogical rela-
tions between words. Distributional semantics also provides a natural framework
for the computational implementation of linguistic theories that rely on the claims
that context of use is a proxy to linguistic meaning.

The fact that the meaning of words can be inferred from use is something intu-
itively true, which can be demonstrated with a set of examples like the following
ones1:

(3) He handed her glass of bardiwac.

(4) Beef dishes are made to complement the bardiwacs.

(5) Nigel staggered to his feet, face flushed from too much bardiwac.

(6) Malbec, one of the lesser-known bardiwac grapes, responds well to Aus-
tralia’s sunshine.

(7) I dined off bread and cheese and this excellent bardiwac.

(8) The drinks were delicious: blood-red bardiwac as well as light, sweet
Rhenish.

Although we could not possibly know the referential meaning of the word bardi-
wac, we can provide quite a few inferences: it is probably a liquid substance
(sentence 3), usually consumed during meals (sentences 4-7), it is probably alco-
holic (sentence 5), and so on. If one were presented with this set of sentences,
and then asked what bardiwac means, the most likely answer would probably be
something like a kind of wine. And these sentences were in fact created by substi-
tuting the word claret, a french wine, with the fake word bardiwac.
One of the main criticism often posed to the distributional theories is that of being

1Examples from Stefan Evert, handpicked and edited from the British National Corpus
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primarly a theory of lexical meaning. The issue of compositionality and complex
meaning representation has a long-standing history in linguistics, and various the-
ories about how complex meaning is derived have been proposed.
Because of the traditional distinction between syntax and semantics, a syntacti-
cally transparent semantic composition theory has been the most widely accepted
and employed.
Following this statement:

• all elements of content in the meaning of a sentence are found in the seman-
tic representations of the lexical items composing the sentence;

• the way the semantic representations are combined is a function only of the
way the lexical items are combined in syntactic structure. In particular, the
internal structure of individual semantic representations plays no role in de-
termining how the semantic representations are combined, and pragmatics
plays no role in determining how semantic representations are combined.

Distributional semantics has approached the problem of compositionality mainly
relying on this standard, Fregean approach, namely considering the lexicon as a
pretty much fixed set of word-meaning pairs, and representing sentence meaning
as the algebraic composition of pre-computed semantic representations. Chapter
3 provides a short review of available models for compositionality within the dis-
tributional semantic framework.

On the other hand, factors that have been long assumed to lie outside the lexi-
con, such as pragmatic or world knowledge, have proven to be processed together
with lexical knowledge, playing a significant role in comprehension very early in
processing, guiding the speaker’s expectations about the upcoming input.
The metaphor of the lexicon as a dictionary is no longer suitable, and augmenting
the lexicon with structures like Pustejovsky’s qualia has been proven not to be
a feasible option: these are not flexible enough to account for the wide variety
of interpretations that can be retrieved (Lascarides and Copestake, 1998; Zarcone
et al., 2014) and that are influenced by factors such as the subject choice, the
general syntactic and discourse context, and by our world knowledge. Chapter 4
summarizes some of the theories in the Generalized Event Knowledge frame-
work that aims at overcoming such limitations.
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Based on the importance of event knowledge in the comprehension process,
we developed a general framework that allows for the integration of this general-
ized event knowledge into standard compositional distributional models, such as
the sum model. Our architecture, described in chapter 5, is fairly customizable,
and generally based on a twofold structure: a storage component, called DEG (dis-
tributional event graph), which is a repository of both traditional lexical meanings
and knowledge coming from events, and an activation and integration component,
which accounts for meaning composition.

Chapter 6 is concerned with the evaluation process. We aimed at evaluating
the contribution of activated event knowledge in a sentence comprehension task.
For this reason, we implemented a reduced version of the hypothesized frame-
work and, among the many existing datasets concerning entailment or paraphrase
detection (a brief review is provided in section 3.2), we chose RELPRON (Rimell
et al., 2016), a dataset of subject and object relative clauses, and the transitive
sentence similarity dataset presented in Kartsaklis and Sadrzadeh (2014). These
two datasets show in fact an intermediate level of grammatical complexity, as they
involve complete sentences (while other datasets only consider smaller phrases),
while being composed of fixed length sentences with similar syntactic construc-
tions (i.e., transitive sentences). The two datasets differ with respect to size and
construction method.
RELPRON was also the object of a pilot study, described in the same chapter,
whose aim was to validate the dataset and enrich it with human judgements,
thereby providing a different perspective on model testing.
Some more in-depth qualitative discussion on the models is reported in chapter 7,
in particular with respect to RELPRON dataset, which is the one we developed our
models on.

Chapter 8 draws some conclusions on the work and suggest further devel-
opments and analysis that are needed in order to gain a deeper insight on the
treatment of compositionality within distributional semantics.
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2 | Meaning and Linguistic Contexts

2.1 Distributional Semantics, meaning from usage

Distributional semantics is a usage-based model of meaning, lying on the assump-
tion that meaning in language is an abstraction over the linguistic contexts in
which linguistic items are used.
Relying on the hypothesis that the semantic similarity of lexical items is a function
of their distribution in linguistic contexts, a mathematical encoding of the hypoth-
esis is easily provided by means of a vectorial representation of co-occurrences.
This kind of representations, thanks to their scalar properties, have proven them-
selves to be able to at least partially overcome some of the well known problems
left out of the picture by formal theories of meaning representation. These can be
collectively addressed as issues concerning the relationship between word mean-
ing and word usage in context, and include a great amount of phenomena, ranging
from meaning acquisition to logical metonymy, that have long been considered at
the periphery of linguistic competence, while being central to how speakers actu-
ally use language to convey meaning.

2.2 Distributional Hypothesis

The theoretical foundations of distributional semantics lie in the so called Distri-
butional Hypothesis (henceforth, DH), namely the fact that

”lexemes with similar linguistic contexts have similar meaning” (Lenci,
2008).
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While the most famous formulation of the DH is to be found in Firth (1957),

”you shall know a word by the company it keeps”,

the first complete theorization of the distributional method is to be found in Har-
ris (1954). Harris, claiming that similarity in distributions should be taken as an
explanans for meaning, provides a solid empirical methodology for the semantic
analysis, including meaning among the entities that are part of linguistic studies.

Distributionalism as a more general theory of meaning has anyway broader
foundations, influenced also by Wittgenstein (1953) and well developed within be-
havioral psychology (e.g., according to Deese (1966), meaning is acquired thanks
to association or co-occurrence of stimuli) and cognitive sciences: here, studies
such as Rubenstein and Goodenough (1965) showed how similarity judgements
and linguistic contexts overlap significantly. Miller and Charles (1991), in a simi-
lar distributional fashion, claim that

”words contextual representation is an abstract cognitive structure
that accumulates from encounters with the word in various (linguis-
tic) contexts. Two words are semantically similar to the extent that
their contextual representations are similar”.

Given this twofold nature of the DH, as an empirical methodology as well as
a cognitive hypothesis, Lenci (2008) distinguishes between a weak and a strong
version of the DH.
The former is in fact taken as a quantitative method for semantic analysis: as in
Harris distributional procedures, a certain correlation between semantic content
and linguistic distribution is assumed, thus allowing the weak DH to coexist within
many research programs in theoretical linguistics (e.g., distributional methodolo-
gies were employed within the theory of the Generative Lexicon by Pustejovsky
(1991)).
The strong DH deals instead with the possibility that the form and origin of seman-
tic representations is distributional: in this approach contexts have a specific role
in the formation of cognitive representations. This version of the DH pairs with
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usage-based theories of meaning. Quoting Miller and Charles (1991), the dis-
tributional behaviour of lexemes has a role in explaining the semantic cognitive
content, as

”what people know when they know a word is not how to recite its
dictionary definition they know how to use it (when to produce it and
how to understand it) in everyday discourse”.

In this stronger formulation, the distributional hypothesis is able to address the
problem of language comprehension as a whole, also being concerned with how
linguistic knowledge interacts with perceptual or non-linguistic reasoning, whose
behaviour could be acquired and modeled distributionally as well.
Some recent research goes towards a distributional and yet more comprehensive
model of language, tackling issues such as multi-modality (Feng and Lapata,
2010; Bruni et al., 2014) and the integration of non-linguistic distributional in-
formation into distributional semantic models, In this area, many models aim at
enriching linguistic representations with visual information, paving the way for
more and more complex and multidimensional models of meaning.

2.3 Distributional representations

While symbolic semantic representations are discrete and categorical, distribu-
tional representations are graded (words differ not only in the contexts in which
they appear, but also in the salience of these contexts) and distributed (semantic
properties derive from global vector comparison).

The most popular framework that implements DH for semantic analysis is
based on Vector Space Models (Salton et al., 1975), first developed in Informa-
tion Retrieval (IR) in the early ’60s.
This was introduced to represent documents in terms of the words they are com-
posed of, statistically weighted upon their relevance, thus allowing to measure
document similarity in terms of distance in the vector space, but was later em-
ployed also to determine term similarity in order to perform IR tasks such as
query expansion. Terms are here considered similar if they tend to appear to-
gether in documents.
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Figure 2.1: Image from Lenci (2018), showing distributional vectors of the lexemes car,
cat, dog and van. Each dimension (in this example only 3 dimensions are considered) rep-
resents a relevant context for the linguistic items. Similarity among lexemens is intuitively
related to their proximity in vector space.

Classical Distributional Semantic Models (henceforth: DSMs), also known
as Matrix Models or Count Models, generalize the idea of Salton et al. (1975)
Vector Space Model: a lexeme is represented as a n−dimensional vector, where
the distributional components are features representing co-occurrences among lin-
guistic contexts (see table 2.1).

Although table 2.1 shows raw frequencies, for exemplification reasons, these
turn out to be far from the optimal solution to estimate the salience of linguistic
contexts. In order to overcome this problem, which is due to the natural distri-
bution of linguistic input, distributional models employ several refined statistical
measures to weigh co-occurrences and get higher scores for more informative con-
texts.
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bite buy drive eat get live park

van 0 9 0 0 12 0 8
car 0 13 8 0 15 0 5
dog 6 0 0 9 10 7 0
cat 0 0 0 6 8 3 0

Table 2.1: The table shows a co-occurrence matrix. Each lexical item, on the rows, is
represented by a 7−dimensional vector, where each dimension is labeled with a relevant
linguistic context selected during the modeling phase.

The correspondence between distributional features and linguistic context can
be bijective in principle, where each vector component can correspond to a dis-
tinct context, although in practice this methodology shows some drawbacks due to
the so-called curse of dimensionality. Linguistic contexts tend, in fact, to be very
sparse and objects in the vector space end up being almost equidistant, making
it difficult to discriminate similar from dissimilar ones. Moreover, these explicit
vectors fail at taking into consideration the fact that context themselves are simi-
lar to one another, missing some crucial conceptual generalization. For these rea-
sons, implicit vector have soon been introduced (Deerwester et al., 1990), where
lexemes are represented by dense, low dimensional vectors composed of latent
features extracted from co-occurrences, through dimensionality reduction tech-
niques.

When applied to very large matrices, dimensionality reduction algorithms
such as Singular Value Decomposition (SVD) can be computationally quite oner-
ous. A major issue concernes the fact that these algebraic techniques rely on the
global statistics collected in the co-occurrence matrix. If new distributional data
is added, the whole semantic space must be built again from scratch, making the
model unfeasible for an incremental study.
Still in the domain of count DSMs, there are also Random Encoding Models
(Kanerva et al., 2000; Sahlgren, 2006; Jones and Mewhort, 2007; Recchia et al.,
2010): rather than collecting global co-occurrence statistics into a matrix and then
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optionally reducing them to dense vectors, they directly learn low-dimensional
implicit vectors by assigning each lexical item a random vector that is incremen-
tally updated depending on the co-occurring contexts.

A whole different approach to learning distributional vectors are Prediction
Models: instead of counting co-occurrences, prediction DSMs (also commonly
known as word embeddings) are created through network algorithms that provide
low-dimensional, implicit distributional representations.
These algorithms learn how to optimally predict the context of the target item
(Skip-Gram with Negative Sampling (SGNS), figure 2.2) or the item vector based
on the context (Continuous Bag of Words (CBOW), figure 2.3), both introduced in
Mikolov et al. (2013a).

Figure 2.2: Image from Mikolov et al. (2013a), showing the skip-gram model archi-
tecture. The training objective is to learn word vector representations that are good at
predicting the nearby words.
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Figure 2.3: Image from Mikolov et al. (2013a), showing the cbow model architecture. As
in the skip-gram case, the training objective is to learn word vector representations that
are good at predicting the nearby words.

Starting from Mikolov et al. (2013a), many other architectures for the cre-
ation of dense word vectors have been introduced in literature, such as GloVe
(Global Vectors) (Pennington et al., 2014), a popular implementation that pro-
duces dense vectors based on a weighted least squares model trained on a global
matrix of word-word co-occurrence counts, and the recently introduced FastText
(Bojanowski et al., 2017), which exploits the idea of learning word representa-
tions as the sum of the embeddings of the character n-grams composing them.

Despite their increasing popularity, due to the fact that various types of ”lin-
guistic regularities” have been claimed to be identifiable by neural embeddings
(see figure 2.4), the question whether neural embeddings are really a breakthrough
with respect to more traditional DSMs is far from being set (Levy and Goldberg,
2014), largely depending also on the dataset size (Sahlgren and Lenci, 2016).

A summary of vectorial distributional representations is provided in figure 2.5.
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Figure 2.4: Image from Mikolov et al. (2013b), left panel shows vector offsets for three
word pairs illustrating the gender relation. Right panel shows a different projection, and
the singular/plural relation for two words

2.3.1 Beyond vectorial DSMs

Most approaches to distributional semantics rely on dense vector representations.
Apart from technical reasons mainly related to available libraries and efficiency
of computations, there seems to be no theoretical reason to rely solely on vector
space models.
Some efforts towards the de-biasing of DSMs from this assumption have been
made, with the creation of a graph based distributional model (Biemann et al.,
2013; Biemann, 2016).

2.4 Parameters for distributional representations

DSMs can be seen as tuples < T,C,W, S >, where:

• T are the target elements (i.e., the lexemes for which the DSM provides a
representation);

• C are the linguistic contexts with which T co-occur;

• W is a context weighting function in the case of count models, or the ob-
jective function in the case of predictive models;

• S is a similarity measure between the produced representations.

14



Figure 2.5: Image from Lenci (2018), showing how different DSMs get categorized with
respect to the different approaches presented.

Each of the component of the distributional model introduces a certain amount
of variability, which makes it possible to tailor the construction of the DSM to
specific purposes.

2.5 Semantic relations in DSMs

Unsupervised methods which induce vector representations from large textual cor-
pora coalesce several types of information, in particular not being able to distin-
guish notions of semantic similarity and relatedness.
As distributional semantics is being applied to a broader range of tasks than lexical
representation, a more fine grained distinction between different kinds of relations
would be beneficial in order to provide the right kind of inference depending on
the context imposed by the task.
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While many datasets have been released in order to evaluate distributional
models, the relationship between semantic similarity and DSMs is much more
complex than it appears.

If not explcitally built in order to avoid this, DSMs typically provide high sim-
ilarity scores for words that are semantically similar (i.e., car and van) as well as
for words that are semantically related or associated (i.e., car and driver).
Just mentioning two among the most popular evaluation datasets commonly em-
ployed for evaluating the performances of distributional models (WS-353 by Finkel-
stein et al. (2001) and MEN by Bruni et al. (2012)), these have been shown (Hill
et al., 2015) to measure word association rather than proper similarity, and they
both seem to suffer from the fact that dissimilar pairs (i.e., non-synonyms such as
antonyms) receive high ratings because of the instructions provided to the human
annotators, while associated but dissimilar concepts do not receive low ratings
(i.e., summer and drought are rated 7.16 out of 10).

Moreover, while state-of-the-art models are able to match human performances
on the available datasets, the ability of DSMs to distinguish between different lex-
ical relations (i.e, hypernymy, antonymy, meronymy as well as non standard se-
mantic relations, which in turn show very different inferential properties) is far
from being set.
As pointed out in Lenci (2018), the outcome of DSMs resembles a network of
word associations, rather than a semantically structured space, which is an impor-
tant shortcoming for applications and for linguistic research as well, as the limi-
tations in properly distinguishing different semantic relation influences the ability
to model logical inferences, which are crucial to human reasoning (Erk, 2016).

On the opposite side, formal approaches to meaning representation and com-
position provide fine grained distinctions among different kinds of semantic re-
lations (i.e., lexical ontologies) and mathematically well-defined frameworks to
perform inferences. The most promising perspective seems to be the integration
of distributional information with symbolic models, in order to merge the greater
flexibility demostrated by statistically-induced representations with the rich infer-
ential power of formal structures.
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3 | Composition

3.1 Compositional Distributional Semantics

The representation of complex linguistic expression is a challenging and widely
debated topic for distributional semantics. The entire set of approaches to the
representation of complex meaning in distributional space can be roughly split in
two families:

• the first group of approaches is concerned with extending the distributional
hypothesis to broader portions of text;

• the second group proposes to obtain a representation of the distributional
meaning of a complex expression by composing a lower-level object, such
as the distributional representation for word-units.

Concerning the first family, we cite the work from Lin and Pantel (2001) as
an example. However interesting, this kind of approach shows many drawbacks
from our perspective: the first is a computational one, as the arbitrary length of
sequences results in data sparseness and less reliable estimates. Moreover, it is
a linguistically and cognitively implausible approach, which does not take into
account well established principles of comprehension such as the most accredited
theories of conceptualization and compositionality.

As far as the second family of approaches is concerned, a general framework
for vector-based models of compositionality is presented in Mitchell and Lapata
(2008). In their framework, semantic composition is defined primarly as a func-
tion of two vectors, u⃗ and v⃗. These two constituents will stand in some semantic
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relation R. Moreover, while processing a complex structure, we might add any
amount of additional knowledge, which is represented by another component K.
The general class of models for this process of composition is therefore expressed
by the relation:

p⃗ = f(u⃗, v⃗, R,K) (3.1)

Through the variation of these parameters, the framework expresses a wide vari-
ety of models, in the spirit of using distributional information to build meaningful
representations for more complex linguistic structures.
While common methods for combining vectors involve simple operation such as
sum or average, which are insensitive to word order or syntactic structure, they
point out the importance of syntactic relations for sentence and discourse process-
ing, as well as sentence priming or inference tasks.

3.1.1 Full-algebraic approaches

A first set of approaches to the issue of compositionality in the distributional se-
mantic space can be regarded as a set of purely algebraic techniques, which phrase
the problem of meaning composition as the composition of content vectors only.
The result of the composition function is therefore itself a vector living in the same
space of the original vectors.

Although effective in practice, as shown in Blacoe and Lapata (2012) and
many other works, these models have many limitations from the linguistic point
of view.

Additive model

In the additive model, the composition is obtained through linear combination of
word vectors.

p = Au+Bv (3.2)

where A and B are weight matrices or, in the simplified version

p = αu+ βv (3.3)

α and β are weights generally set to 1.
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The resulting vector can be seen as a sort of union vector obtained by summing
up the relevant contexts for the word vectors.
Several issues may arise concerning this method:

• intuitively, the meaning of a complex expression is not easily approximated
by the general meaning of its parts. This is due to the polysemous nature of
lexemes: when composing a lexical item in context, we select the relevant
traits of the item, thus ideally excluding some aspects from the resulting
meaning;

• the method does not, in principle, take into account word order, while the se-
mantic operation of composition certainly does: this effect can be mitigated
via the introduction of coefficients in order to allow for different weighting
of items;

• depending on the techniques used to build the vector space, different type
of words may end up living in different sub-spaces of the semantic space:
summing different vectors together may result in a vector concatenation
operation.

Zanzotto et al. (2010) introduce a novel approach for estimating parameters
for additive compositional distributional semantics.
The generic additive model is defined as

z⃗ = Ax⃗+By⃗ (3.4)

where A and B which determine the contributions of u and v to p, and should
therefore capture the syntactic relation and any background knowledge needed.
Their approach focuses on solving a regression model with multiple dependent
variables: given a set of training examples E of triples (x⃗, y⃗, z⃗), we can write the
basic regression equation as:

z⃗ = (A,B)

(
x⃗

y⃗

)
(3.5)

The approximate solution is computed through Least Square Estimation.
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Multiplicative model

As the additive model behaves like a union over the salient contexts, the idea be-
hind the multiplicative model is the one of intersection between contexts.

p = CuvT (3.6)

where C is a weight tensor that projects the uv tensor product into the space of p.

In a simplified version, the operation is performed component-wise:1

pi = ui × vi (3.7)

this way the salience of a context for one item involved in the composition func-
tions as a weight on the other item.

A major issue comes from the same observations reported above: when apply-
ing the multiplicative composition to vectors living in different subspaces of the
vector space, the result will be null or too sparse since there are no or few common
contexts.

Another issue, pointed out in Bride (2017), derives from the fact that the vector
obtained through component-wise multiplication depends on the base of the vector
space: while this could be an interesting point from the linguistic perspective, it
certainly arises some problems from the mathematical one, as many mathematical
operations on vector spaces derive from the fact that we assume the possibility to
change the base of the representation.

1This is equivalent to performing the outer product of the two vectors u and v and considering
C as the projection of the main diagonal.
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Matrix models

Rudolph and Giesbrecht (2010) propose a Compositional Matrix-Space Model
(CMSMs) which uses matrices instead of vectors and matrix multiplication as the
one and only composition operation (see figure 3.1).

Figure 3.1: Image from Rudolph and Giesbrecht (2010). Given a mapping |·| : Σ → S

from a set of tokens (words) Σ into some semantical space S, the semantic composition
operation 1: S∗ → S maps sequences of semantic objects into semantic objects, such
that the meaning of a sequence of tokens can be obtained by applying 1 to the sequence
of semantic objects, thus creating an isomorphism between (Σ∗, ·) and (S∗,1).

The model is said to be both algebraically plausible, as matrix multiplication
is associative but non-commutative, and cognitively or psychologically plausible,
as mental states are represented as vectors of numerical values and changes in
mental states as linear applications that shift the vectors. A semantic space of ma-
trices can thus be seen as a function space of mental transformations.
Rudolph and Giesbrecht show how CMSMs is able to cover a variety of distri-
butional and symbolic aspects of natural languages, yet crucial questions remain
open: besides hand-crafted encodings, it must be shown how to acquire CMSMs
for large token sets, and non-linear aspects cannot be expressed by matrices, that
narrow the possibilities down to linear mappings.
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3.1.2 Taking order into consideration

One of the main issues when dealing with distributional models of meaning and
compositionality is that of taking into account the order in which words appear in
the sentence.
As stated about the problem of compositionality itself, integrating syntactic infor-
mation into vector spaces seems to be a fundamental step in order to achieve good
results in compositionality.
Many approaches have been proposed to integrate this kind of information, and
here we present a few of them.

In Giesbrecht (2010) a matrix-based distributional model is proposed, in order
to overcome limitations due to word order encoding in vector space.
Given a vocabulary V , a context window w = m and a series of tokens t1, ...t1 ∈
V , for a token ti a matrix of size V × V is generated that has nonzero values in
cells where ti appears between ti−m and ti+m.
This procedure defines a tensor T where T (i, j, k) is the number of occurrences
of L(j)sL(i)s′L(k) in the corpus, where s and s′ are sequences of at most w − 1

tokens.
Giesbrecht (2010) provides the following example: given a corpus made up by the
following three sentences,

(9) Paul kicked the ball slowly.

(10) Peter kicked the ball slowly.

(11) Paul kicked Peter.

the matrix representation for the item kick is shown in table 3.1, assuming a
window of size 1 and prior stop-words removal.

The obtained space is clearly very sparse, so dimensionality reduction needs
to be performed in order to obtain feasible objects.

A different approach is presented in Jones and Mewhort (2007) and in Sahlgren
et al. (2008), inspired by the former.
The method introduced by Jones and Mewhort, named BEAGLE (Bound Encod-
ing of the Aggregate Language Environment), represents each word with three
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KICK PETER PAUL KICK BALL SLOWLY
PETER 0 0 0 1 0
PAUL 1 0 0 1 0
KICK 0 0 0 0 0
BALL 0 0 0 0 0
SLOWLY 0 0 0 0 0

Table 3.1: The table provides the matrix representation obtained for the lexical item kick.
Each cell represents the occurrence of a left and right context for the item.

memory vectors: one encoding co-occurrences, one encoding word order, and the
last one combining the two. The vectors are computed through environmental
auxiliary vectors, which are random vectors whose components are normally dis-
tributed i.i.d. (independent and identically distributed) random variables.
We report an example from the authors: consider the sentence

(12) a dog bit the mailman

and dog as the target word.
When processing the sentence, we would have:

• dog, the environmental vector set once at the beginning of the procedure;

• _dog_, the context information for the present sentence;

• <dog>, the order information for the present sentence;

• _DOG_, the vector accumulating context information;

• <DOG>, the vector accumulating order information;

• DOG, the final memory vector for dog;

The context information is computed like standard co-occurrence informa-
tion, thus registering co-occurrences from the current sentence, normalizing it
and adding to the context vector.
The order information is computed by adding up all the possible n-grams vectors
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obtained from the sentence through a convolution operation2 between a place-
holder vector fixed in advance and vectors from co-occurring words.

At the end of the procedure, the vector DOG is obtained summing up the two
vectors _DOG_ and <DOG>, and it’s sensitive to both word order and proximity.

Similarly to Jones and Mewhort, in Sahlgren et al. (2008) Random Indexing is
used to get environment vectors and permutations are used as convolution opera-
tions. These have the advantage of being easier to compute. Moreover, Sahlgren
et al. claim that replacing products with sums gives a better representation of word
order since it allows the vectors to tolerate similarity between slightly varied sen-
tences (e.g. dog bit a man vs. dog bit the man).

3.1.3 Introducing structure in vector space

The model presented in Erk and Padó (2008) stems again from the failure to con-
sider syntax as a relevant part in the representation of meaning in vector space.
The authors underline two important aspects: in the first place, the syntactic rela-
tion between the target u and its context v is often ignored during the construction
of the vector space and the composition operation. In the second place the re-
sult of a vector composition operation is itself a vector: Erk and Padó claim that
this might not be the best choice because single vectors can only encode a fixed
amount of information and thus may not be able to scale up to the meaning of
entire phrases or sentences.
Their proposal is a structured vector space model for word meaning: the repre-
sentation for a lemma comprises several vectors representing the word’s lexical
meaning along with its selectional preferences. The meaning of a word u in a
context v is computed combining u with the selectional preferences expressed by
v, which are specific to the relation holding between the two items. The con-
textualized vectors can then be combined with a representation of the structure’s
expression, such as a parse tree, to address the issue of compositionality.

2A convolution operation is a mathematical operation between functions. In this case, it is
used in the form of circular convolution in order to project back the tensor product between two
vectors in the original vector space.
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Their intuition is to view the interpretation of a word in context as guided by ex-
pectations about typical events linked to that word. This is a well established line
of research both in cognitive science (situation models) and computational lin-
guistics (selectional preferences and selectional restrictions).
Each word is encoded (see figure 3.2) as a combination of:

• a vector that models the lexical meaning of the word;
• a set of vectors, each representing the semantic expectations for each par-

ticular relation supported by the word.

Figure 3.2: Image from Erk and Padó (2008). Lexical information is enriched with se-
lectional preferences modeled through syntactic relations.

Formally, let D be a vector space and L a set of relation labels, the meaning of
a lemma w would be a triple (v,R,R−1) where v ∈ D is a standard lexical vector,
R : L → D maps each relation into a vector that describes the selectional prefer-
ences of w and R−1 : L → D maps from labels to inverse selectional preferences
of w.
Referring to figure 3.2, the meaning of ball would be composed of the vector of
ball (bold in the picture), its selectional preferences associtated to the syntactic
label mod (i.e., red, golf, elegant) and its inverse selectional preferences as a sub-
ject (i.e., whirl, fly, provide) and as an object (i.e., throw, catch, organize).
Given a = (va, Ra, R

−1
a ), b = (vb, Rb, R

−1
b ) and l ∈ L the relation holding be-

tween the two, it is possible to compute the contextualized representation of the
two vectors as a′ = (va∗R−1

b (l), Ra−{l}, R−1
a ) and b′ = (vb∗Ra(l), Rb, R

−1
b −{l})

where ∗ is a standard composition operation between vectors such as sum or
component-wise multiplication (see figure 3.3).
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Figure 3.3: Image from Erk and Padó (2008). Predicate and argument are combined via
relation-specific semantic expectations. In this example, the representation for catch and
the representation for ball are contextualized in the compositional segment catch ball.
The selectional preferences of catch for the label obj are composed with the distributional
vector of ball, while the inverse selectional preferences for ball are composed with the
distributional vector for catch. The selectional preferences for the object relation are then
removed from the representation of ball and catch.

Along with this line of research Erk and Padó (2010) argue that the problem
of representing contextualized meaning is closely related to the problem of con-
cept combination in cognitive science: many approaches are based on prototype
models, and type vectors can be regarded as an implementation of the prototype-
theory. Erk and Padó propose instead an exemplar model, which memorizes each
encountered instance of a category and uses the current context in order to activate
relevat exemplars.
Each target is therefore represented by a set of exemplars (i.e. all the sentences
in which the target occurs). Given a set of exemplars of a lemma E, relevant
exemplars are selected as follows:

act(E, s) = {e ∈ E|sim(e, s) > θ(E, s)} (3.8)

where s is the point of comparison, sim is a similarity function and θ is a thresh-
old function.
As pointed out by Erk and Padó, a major drawback to this approach is the consis-
tent computational overhead needed during the comparisons.
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3.1.4 Neural Networks

A different kind of approach is the one described in Socher et al. (2012): a com-
positional vector representation for sequences of arbitrary length is constructed
via a recursive neural network that operates over a parse tree.
Each constituent of the expression (words in the first step, internal nodes after-
wards) is associated with both a matrix and a vector. The latter captures the lex-
ical meaning of the constituent, while the former is used to modify the words it
combines with, as a function.

The model is inspired by the work of Socher et al. (2011), where each parent

vector of the parse tree is obtained through the formula p = g

(
W

[
a

b

])
, where

W is a matrix and g is a non-linear function. The representation for the entire
phrase is then built up recursively, by navigating upwards the parse tree.
Socher et al. extend this idea by assigning a matrix to each word and learning a
non-linear composition function for any syntactic type.
This approach appears able to approximate the behavior of words which function
mainly as operators and lack a proper semantic representation, and the behavior
of content words as well.
The final function proposed by the authors is the following:

p = fA,B(a, b) = f(Ba,Ab) = g

(
W

[
Ba

Ab

])
(3.9)

where A,B are matrices for single words and W maps both transformed words in
the same n-dimensional space.
After two words are merged in the parse tree, the new constituent can be merged
with another one by applying the same functions (see figure 3.4).

3.1.5 Formal methods with distributional meaning

Coecke et al. (2010) propose a framework based on the algebra of pregroups, as
introduced by Lambek (1997), in order to unify the distributional theory of mean-
ing and the compositional theory of grammatical types.
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Figure 3.4: Image from Socher et al. (2012), showing how intermediate nodes of the
parse tree are composed. The whole sentenc is represented by the root of the parse tree.

The use of pregroups is motivated by the common structure they share with vec-
tor spaces and tensor products: this makes it possible to join methods from both
formal and distributional semantics, as the meaning of words are represented by
vectors whereas grammatical roles are types in the pregroup.
Pregroups formalize the grammar of natural language in the same way as type-
categorial logics do. One starts by fixing a set of basic grammatical roles and a
partial ordering between them. A type is assigned to each word of the dictionary
and reduction rules are applied to get one type from the composition of others.
The model is therefore category-theoretic, as this allows us to store additional in-
formation needed for a quantitative approach, and to reason about grammatical
structures of a phrase.
The authors provide two examples (reported below), for which they fix the fol-
lowing basic types, from which compound types are formed by adjoints of juxta-
position:

• n: noun;
• j: infinitive of the verb;
• s: declarative statement;
• σ: glueing type.

If the juxtaposition of the types of the words within a sentence reduces to the basic
type s, then the sentence is said to be grammatical.
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The sentence John likes Mary has the following type assignment3:

• John: n
• likes: nrsnl

• Mary: n

and therefore reduces to the type s as follows (diagrammatically shown in figure
3.5):

n(nrsnl)n → 1snln → 1s1 → s (3.10)

Figure 3.5: Image from Coecke et al. (2010), showing the reduction diagram for the
sentence John likes Mary.

They similarly provide a reduction for the sentence John does not like Mary,
for which we only show the diagrammatical reduction in figure 3.6.

Figure 3.6: Image from Coecke et al. (2010), showing the reduction diagram for the
sentence John does not like Mary.

Asher et al. (2017) present a method to integrate Type Composition Logic
(TCL, as defined in Asher (2011)), which provides a formal model of the inter-
action between composition and lexical meaning, with distributional semantics.

3nr and nl are left and right adjoints for an element n
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In TCL, a logical form is assigned to the target combination, where each unit is
contextualised through a logical function depending on the others. As an exam-
ple, let’s consider the combination of heavy with traffic. In the TCL formalism,
this would result in a logical form such as:

λx.(O(heavy)(x) ∧M(traffic)(x)) (3.11)

where O is a functor induced by the noun and M does the same for the adjective.
Functors are meant to contextualize the lexical meaning of the items. TCL how-
ever does not provide any method to construct functors or lexical meaning, and
that’s where distributional semantics comes in handy.
Like most formal semantic theories, TCL distinguishes between the external con-
tent of a word, which is the appropriate extension at time of evaluation, and a type
or internal content, which can be regarded as the proper lexical meaning of the
word, or the set of features associated with it.
In the model proposed by Asher et al. (2017), each type is an algebraic object built
through distributional semantics: individual types will be vectors, while functors
will be transformations that allow for vector or type shifts.
Asher et al. (2017) present two methods to compute a contextualised weighting
of lexical units: the first one, latent vector weighting, is based on a matrix fac-
torization technique in which a latent space is constructed and used to determine
which dimensions are important for a particular expression, while the second one
is based on tensor factorization.

Another effort in bridging formal and distributional semantics comes from
Clark and Pulman (2007) and is furtherly elaborated in Clark et al. (2008): here
the authors analyze the work of Smolensky and Legendre (2006), which aimed
at integrating the connectionist and the symbolic models of comprehension. A
symbolic structure s is defined by a collection of structural roles ri each of which
may be occupied by a filler fi, s is therefore a set of constituents, each being a
filler-role binding fi/ri. In the connectionist approach, roles and fillers are vec-
tors. Smolensky and Legendre propose a tensor product representation to obtain
a connectionist vector for the whole symbolic structure.
Clark and Pulman use this same approach to combine symbolic and distributional
models of meaning, where the symbolic structure is a sort of representation of
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the sentence, such as a parse tree or a set of predicate-argument relations, and the
distributional representation is a set of context vectors.
The final representation is obtained through a tensor product between roles and
fillers, whose order is determined by some traversal of the symbolic structure.
For example, for the parse tree in figure 3.7, the tensor product proposed to obtain

Figure 3.7: Image from Clark and Pulman (2007), showing the parse tree for the sentence
John drinks strong beer quickly.

the sentence meaning is the following:

drinks ⊗ subj ⊗ John ⊗ obj ⊗ (beer ⊗ adj ⊗ strong)⊗ adv ⊗ quickly (3.12)

assimung that vectors for dependency relations (i.e., sbj, obj, etc...) form an or-
thonormal basis in a ”relation space”.
This allows us to encode order information in the final representation (i.e., the
representation for dog bites man is different from the one for man bites dog),
but leaves some issues open, such as how to obtain vectors for the symbolic re-
lations (e.g. dependency relations such as sbj, obj...): these are supposed to be
an orthonormal basis in a relation space, but this leaves space to another major
drawback, namely the fact that the semantic comparison between two sentences
only makes sense if the two sentences can be represented by the same parse tree,
therefore living in the same tensor space, and this makes the model less flexible.
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3.1.6 Lexical Function Model

Baroni and Zamparelli (2010) propose a model for adjective-noun composition,
representing nouns as vectors and adjective as matrices, which can be interpreted
as functions over vectors.
Adjectives in attributive position are considered functions from one meaning to
another, that is to say linear maps from n-dimensional vectors to n-dimensional
vectors. Each adjective is therefore encoded in a weight matrix, which multiplies
the noun vector v⃗ in the formula

p⃗ = Bv⃗ (3.13)

The matrices are estimated through partial least square regressions, approxi-
mating target adj-N vectors automatically extracted from the corpus.
The model, which can be expressed by means of the framework introduced in
Mitchell and Lapata (2008), is only apparently simple: in the first place each ad-
jective matrix is trained separately, requiring a great deal of time or computational
resources to obtain the complete model, moreover the model is not easily scalable
to more complex composition operation. While it is valuable in cases such as
affixation or determiner + N cases, it would be difficult to apply it to different
sentential structures such as verbs + arguments. This results in both linguistics
and computational pitfalls, as each verb can vary in the number of constituents it
requires, and building larger constituents would end up in data sparsity problems.

In order to overcome issues such as the need for an individual function for
each adjective, Bride et al. (2015) attempt a generalization of the Lexical Function
Model introduced by Baroni and Zamparelli. They automatically learn a general-
ized lexical function which has to be composed with both the adjective vector and
the noun vector in order to obtain the phrase representation.
The generalized lexical function would be a tensor A, which is multiplied by the
vector for the adjective and the vector for the noun following. The product be-
tween the tensor and the vector produces a matrix, which would be the LF matrix
for the adjective.
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As a practical matter, the problem can be formalized as follows:

Find A so that:
∑
adj

(A× adj − ADJ)2 is minimal (3.14)

therefore the learning phase still needs to acquire a certain number of matrices
for adjectives.

Paperno et al. (2014) try to overcome some issues of Lexical Function Models
introducing the Practical Lexical Function Model: the representation for a seman-
tic representation for a unit is an ordered tuple of a vector and n matrices. Matrices
are used in substitution for tensors in lexical function models, as they encode the
arity of the linguistic unit: each matrix corresponds to a function-argument rela-
tion and words have as many matrices as many arguments they take. In this frame-
work semantic composition is obtained through two composition rules: function
application and simmetric composition.
The former is employed when it is necessary to handle structures with different
arity (e.g., verb plus noun). The latter applies when two syntactic sisters are of the
same arity (such as the noun-noun composition): this simply sums the two objects
in a new tuple.
As an example (figure 3.8) let’s consider the sentence user writes software: in the
practical lexical function model, user and software would be just vectors, while
write will be represented by a tuple made up of a vector and two matrices, one for
the subject role and the other for the object role. The composition would proceed
as follows: in the first step consists of transforming write into the resulting vec-
tor obtained by summing up the vector of write with the product writes × −−→user,
where writes is the matrix of write for the subject role. This new write needs now
to be composed with software in order to obtain the final vector.

While overcoming many of the pitfalls of lexical function model, this approach
still presents some issues, both from the computational and the theoretical side:
Gupta et al. (2015) acknowledge some inconsistencies in the method proposed by
Paperno et al., which lead to overestimate the predicate lexical contribution to the
composite meaning. Paperno et al. (2014) propose two ways of re-establishing the
correct influence of the predicate, and show that a more balanced compositional
function turns out to be more effective.
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Figure 3.8: Image from Gupta et al. (2015), showing the Practical Lexical Function model
derivation for the noun-verb-noun phrase user writes software.

3.2 Evaluating Compositional Distributional Seman-
tics

In order to compare different approaches to the composition problem, it is essen-
tial to provide datasets that allow for evaluation at various levels of complexity
and make it possible to address the variety of phenomena that can arise during a
compositional process.
The range of proposed datasets is wide and tackles precise grammatical phenom-
ena as well as general relatedness between full complex sentences. Here we offer
a brief review of the most widely employed ones.
Most of the mentioned datasets collect similarity judgments elicited from human
annotators. It must be noticed that, altough humans can reliably judge wether two
phrases are similar, their agreement tends to be lower compared to judgments for
simple word pairs.
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3.2.1 Compositional phrases

While compositional structures have a long-standing history in distributional se-
mantics, the first standard evaluation framework for compositional structures is
probably the one proposed in Mitchell and Lapata (2008), derived from Kintsch
(2001), where the authors predict human similarity judgements on noun-verb
phrases. The similarity mainly depends on the verb sense disambiguation in con-
text: for example, the sales slumped should be more similar to the sales declined
than to the sales slouched, whereas the shoulder slumped is judged more similar
to the shoulders slouched than to the shoulders declined.
Mitchell and Lapata (2010) extend the dataset to a wider range of phenomena,
including adjective-noun and noun-noun, along with verb-object pairs, and focus
more specifically of phrase similarity.

Still addressing small compositional phrases, the following datasets address
more specifically the distinction between compositional and non-compositional
meaning.
Reddy et al. (2011) introduce, motivated by the task proposed in Biemann and
Giesbrecht (2011), a dataset of noun-noun pairs, evaluating both the literality of
the phrase and the extent to which the use of each component was literal within
the proposed phrases, thus attempting to provide a dataset which has both scalar
compositionality judgments of the phrase as well as the literality score for each
component word. table 3.2 shows some examples from the dataset.

Compound Word1 Word2 Phrase
swimming pool 4.80± 0.40 4.90± 0.30 4.87± 0.34

spelling bee 4.81± 0.77 0.52± 1.04 2.45± 1.25

cloud nine 0.47± 0.62 0.23± 0.42 0.33± 0.54

Table 3.2: Phrases showing high, medium and low compositionality ratings from the
dataset proposed in Reddy et al. (2011)
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Similarly, Boleda et al. (2012, 2013) focus on intersective adjectives in compo-
sitional phrases, providing items such as white towel, compositional and involving
and intersective adjective, and false floor or black hole, where the meaning is not
strictly compositional and the adjective does not behave intersectively.

Bernardi et al. (2013) focus instead on noun paraphrasing, investigating in par-
ticular the semantics of determiner phrases when they act as components of the
stable and generic meaning of a content word (as opposed to situation-dependent
deictic and anaphoric usages). For example a trilogy has to be recognized as a
series of three books. Their datasets is made of more than 200 nouns (the final
set contains 173 nouns and 23 determiner phrases) strongly related to a deter-
miner phrase. Matching each noun with its associated DP (target DP), two foil DPs
sharing the same noun as the target but combined with other determiners (same-N
foils), one DP made of the target determiner combined with a random noun (same-
D foil), the target determiner (D foil), and the target noun (N foil). Examples are
shown in table 3.3.

noun target DP same-N foil 1 same-N foil 2 same-D foil D foil N foil
duel two opponents various opponents three opponents two engineers two opponents
homeless no home too few homes one home no incision no home
polygamy several wives most wives fewer wives several negotiators several wives
opulence too many goods some goods no goods too many abductions too many goods

Table 3.3: Examples from the noun-DP relatedness benchmark Bernardi et al. (2013)

3.2.2 Small, complete sentences

Similarly to Mitchell and Lapata (2008) noun-verb pairs, Grefenstette and Sadrzadeh
(2011) and Kartsaklis and Sadrzadeh (2014) introduced a task for full, yet simple
transitive sentences, involving subject-verb-object triples. Sentence pairs were
rated by humans: some of the ratings are summarized in table 3.4.

Another dataset presenting simple yet complete sentences is RELPRON Rimell
et al. (2016), which focuses on relative clauses deawing the attention to a com-
position phenomenon that involves functional words (i.e., that) as well as lexical
ones.
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sentence 1 sentence 2 score (avg)

high score
medication achieve result drug produce effect 6.16
pupil achieve end student reach level 6.08

medium score
commitee consider matter study pose problem 3.16
company suffer loss firm cause injury 3.13

low score
program offer support road cross line 1.00
people remember name physician pass time 1.00

Table 3.4: High, medium and low similarity ratings of sentence pairs from the dataset
proposed in Kartsaklis and Sadrzadeh (2014)

The dataset consists of 1087 manually selected relative sentences, paired with a
target that the sentences are supposed to paraphrase. An example is given in table
3.5.

OBJ cell/N: room/N that prison/N have/V
SBJ study/N: room/N that contain/V bookshelf/N
OBJ bull/N: mammal/N that rodeo/N feature/V
SBJ horse/N: mammal/N that pull/V wagon/N

Table 3.5: Examples of subject and object relative sentences extracted from the dataset
RELPRON.

3.2.3 Full sentence similarity and entailment

Larger datasets for sentence similarity and entailment have been developed mainly
for SemEval or *SEM Shared Tasks.

The first pilot task on semantic textual similarity (STS) was proposed at Se-
mEval 2012 Agirre et al. (2012), collecting examples from the Microsoft Research
Paraphrase dataset (Dolan et al., 2004), the Microsoft Research Video Paraphrase
Corpus (Chen and Dolan, 2011) and the translation shared task of the 2007 and
2008 ACL Workshops on Statistical Machine Translation (WMT) (Callison-Burch
et al., 2007, 2008), along with glosses from pairs of glosses from OntoNotes 4.0
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and WordNet 3.1.
The dataset items were judged through the Amazon Mechanical Turk platform
(examples in 3.2.3, in decreasing order of similarity).

(13) a. The bird is bathing in the sink.

b. Birdie is washing itself in the water basin.

(14) a. In May 2010, the troops attempted to invade Kabul.

b. The US army invaded Kabul on May 7th last year, 2010.

(15) a. John said he is considered a witness but not a suspect.

b. He is not a suspect anymore. John said.

(16) a. They flew out of the nest in groups.

b. They flew into the nest together.

(17) a. The woman is playing the violin.

b. The young lady enjoys listening to the guitar.

(18) a. John went horse back riding at dawn with a whole group of friends.

b. Sunrise at dawn is a magnificent view to take in if you wake up early
enough for it.

The same data was used for the 2013 *SEM shared task Agirre et al. (2013),
where also a more specific task investigating the reason or type of similarity was
introduced.

The SICK dataset (Bentivogli et al., 2016), used in SemEval-2014 shared task
on compositional distributional semantics (Marelli et al., 2014), consisting of
about 10,000 English sentence pairs annotated for relatedness in meaning and en-
tailment, was created including general knowledge about concepts and categories,
but avoiding encyclopedic knowledge about specific instances, which requires the
identification of phenomena such as named entities, that are a non-central issue to
compositionality.
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Each pair in the SICK data set is rated with respect to:

• meaning relatedness between the two sentences;
• meaning entailment between the two sentences;

resulting in a relatedness score and three possible labels for entailment (examples
are given in table 3.6):

entailment - if sentence A is true, sentence B is true
contradiction - if A is true, then B is false
neutral - the truth of B cannot be determined on the basis of A

Sentences Entailment Label Relatedness Score
Two teams are competing in a football match

ENTAILMENT 4.7
Two groups of people are playing football
The brown horse is near a red barrel at the rodeo

CONTRADICTION 3.6
The brown horse is far from a red barrel at the rodeo
A man in a black jacket is doing tricks on a motorbike

NEUTRAL 3.7
A person is riding the bicycle on one wheel
A boy is playing a keyboard

NEUTRAL 2.1
A boy is standing in a room by a lamplight

Table 3.6: Examples of SICK sentences pairs with their gold entailment labels and gold
relatedness scores (measurements are intended out of 5)

More specifically addressing entailment and contradiction is the Stanford Nat-
ural Language Inference (SNLI) Corpus (Bowman et al., 2015), which provides a
larger (570k human-written) and more ecological set of sentence pairs, improving
the control over event and entity coreference, which was identified as a problem
in the existing datasets.
SNLI was created though a crowdsourcing platform, where each worker was pre-
sented with premise scene descriptions from a pre-existing corpus, and asked to
provide hypotheses for each of the three possible labels (entailment, neutral and
contradiction). A portion of the obtained pairs was then validated following the
same procedure as the SICK dataset (examples shown in table 3.7).
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Text Judgements Hypothesis

A man inspects the uniform of a figure in some East Asian country.
contradiction
C C C C C

The man is sleeping

An older and younger man smiling.
neutral

N N E N N
Two men are smiling and laughing at the cats playing on the floor

A black race car starts up in front of a crowd of people.
contradiction
C C C C C

A man is driving down a lonely road.

A soccer game with multiple males playing.
entailment
E E E E E

Some men are playing a sport.

A smiling costumed woman is holding an umbrella.
neutral

N N E C N
A happy woman in a fairy costume holds an umbrella.

Table 3.7: Example pairs taken from the devtest portion of the SNLI corpus. Each pair
has the judgments of five workers and a consensus judgment (if any of the three labels
was chosen by at least three of the five workers, it was chosen as the consensus label).

Among these datasets, also the one presented in Cheung and Penn (2012)
and Pham et al. (2013) are worth mentioning, as they restrict the task to specific
syntactic or semantic phenomena such as nominalization or word order variation.
In the Pham et al. (2013) dataset, for example, for the sentence A man plays a
guitar a paraphrase such as The man plays a guitar is provided, as well as a foil
sentence such as A guitar plays a man.
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4 | Generalized Event Knowledge

Research in semantics has for a long time been addressing the problem of compo-
sitionality as a distinction between two classes of sentences, namely those that do
not violate any combinatorial constraint and are therefore suitable for a semantic
interpretation (see example 19), and those that are judged as semantically impos-
sible or not interpretable, because a semantic violations occurs (see example 20).

(19) The musician plays the flute in the theater.

(20) * The nominative plays the global map in the pot.

The first class, however, consists of a great amount of phenomena, coalescing
in particular typical (example 19) and atypical sentences (see example 21), whose
status aroused much interest in recent experimental research1.

(21) The gardener plays the castanets in the cave.

The classical binary classification has long been supported by a two-step pro-
cess for language interpretation: a first step concerned the computation of the
meaning of the sentence in a context-free manner, solely based on syntactic and
core lexical knowledge, the second step concerned the integration of meaning
with discourse or world-knowledge information. This model has however been
proved wrong by experimental researches on event-related potentials (ERP) (Ha-
goort and van Berkum, 2007), that showed how both semantic violations and
world-knowledge or discourse violations are marked by a greater amplitude of
the N400 component2 (see figure 4.1).

1Examples are taken from Chersoni (2018).
2As the degree of semantic fit between a word and its context increases, the amplitude of the

N400 goes down.
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Figure 4.1: Image from Hagoort and van Berkum (2007), showing how the violations
of semantic constraints (train - sour) and the violations of world knowledge constraints
(Dutch train - white) behave similarly at a cognitive level.

From the processing point of view, it seems that novel and unexpected com-
binations require a bigger cognitive effort than typical associations. Nonetheless,
events and situations, expressed through sentences, are by definition inherently
complex and structured semantic objects, which can be decomposed as stated by
the standard, Fregean principle of compositionality.
A long standing line of research in psycholinguistic studies, compatible with the
results discussed above, suggests that processing is driven by event contingencies
and typical concepts combinations. Therefore, there exist a tradeoff between stor-
age and computation (Baggio et al., 2012), that leads us to the need for a deeper
analysis about the nature and structure of lexical information.
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In this area, we believe there is enough evidence to reject the hypothesis of
a modular lexicon, which paired with processing theories that placed syntax at
the core of sentence composition, in favor of the Generalized Event Knowledge
(GEK) framework and constraint-based models of language, where comprehen-
sion exploits all available sources of information simultaneously.

In particular McRae et al. (1998) studied the influence of the thematic-fit (close
to the notion of selectional preference, (Lebani and Lenci, 2018)) constraint on the
selection of two equally possible syntactic interpretations of a sentence, such as
The man arrested... versus The cop arrested..., which are both open to two pos-
sible continuations, depending on the interpretation of arrested as the main verb
of an active sentence (Main Clause interpretation) or as a past participle (Reduced
Relative interpretation).
Their findings showed the role played by the initial noun (i.e., man or cop) in the
syntactic interpretation of the sentence, and found a model in which all constraints
were used at the same processing stage to be more in line with reading time data of
experimental subjects, thus showing that generalized knowledge about events and
their typical participants is activated during processing and guides the unfolding
representation of the processed sentence. In other words, the fact that cop is more
likely to be the subject of the arrest, while man is more likely to be the object,
seems to be considered at once during the assignment of the syntactic interpreta-
tion to the sentence.

McRae et al. (2005) and McRae and Matsuki (2009) tested event knowledge
priming in more detail, with their results (summarized in figure 4.2) supporting the
hypothesis of a mental lexicon arranged as a web of mutual expectations, which
are in turn able to influence comprehension (figure 4.3).
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Figure 4.2: Image from McRae and Matsuki (2009) summarizing the experimental stud-
ies on event-based verb-argument and argument-argument priming

4.1 The lexicon is the event repository

The majority of available models for meaning composition assumes the meaning
of complex expressions like sentences to be a vector (i.e., an embedding) pro-
jected from the vectors representing the content of its lexical parts.
As already mentioned, this might not be the best choice for more complex lin-
guistic expressions, because of the limited and fixed amount of information that
can be encoded, and there are no theoretical reasons why different representations
should not be considered.

Actually, assuming the equation “meaning is vector” is eventually too limited
even at the lexical level. As supported by the mentioned psycholinguistic evi-
dence, lexical items activate a great amount of generalized event knowledge (El-
man, 2011; Hagoort and van Berkum, 2007; Hare et al., 2009), and this knowledge
is crucially exploited during online language processing, constraining the speak-
ers expectations about upcoming linguistic input (McRae and Matsuki, 2009).
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Figure 4.3: Image from Bicknell et al. (2010) showing the difference in the mean residual
reading times between the congruent and the incongruent condition

In this framework, sentence comprehension can be phrased as the identifica-
tion or creation of the event that best explains the linguistic cues used in the input
(Kuperberg and Jaeger, 2016): as typical events or conceptual associations are
likely to be already stored in the lexicon, they need to be properly retrieved, rather
than built from scratch. Hence the need to find a new balance between storage and
computation in compositional language comprehension.
Along with Rumelhart (1979) and Elman (2009, 2011, 2014), the metaphor of
the lexicon as a dictionary is no longer suitable: words are not seen anymore as
elements in a data structure that must be retrieved from memory (Elman, 2009),

”but rather as stimuli that alter mental states (which arise from pro-
cessing prior words) in lawful ways. In this view, words are not men-
tal objects that reside in a mental lexicon. They are operators on
mental states. From this perspective, words do not have meaning;
they are rather cues to meaning”.

In order to populate the memory component and guide unification Elman pro-
poses a Simple Recurrent Network (SRN) that learns the contingent relationships
between activities and participants that are involved in events that unfold over
time.
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In its strong version (Lenci, 2008), the Distributional Hypothesis appears as a
suitable framework for the computational modeling of generalized event knowl-
edge. Distributional models have in fact been widely used to model psychological
phenomena such as similarity judgements and semantic/associative priming and
have been developed as cognitively plausible models of language comprehension.

Distributional constraint-based models have been successfully applied to the-
matic fit modelling (Erk et al., 2010; Baroni and Lenci, 2010).
The thematic fit θ of a lexical item a given another lexical item b and a syntactic
role s is typically assessed by means of vector cosine between a⃗ and the prototype
vector built out of the k top values c⃗1...c⃗k such that each ci co-occurs with b in the
relation expressed by s. For example, the tematic fit of student as the subject of
reading is given by the cosine similarity between the distributional vector

−−−−−→
student

and the centroid vector built over the most salient subjects of read.

A similar approach is adopted in Chersoni et al. (2016, 2017a,b), showing
good results in the field of logical metonymy and argument typicality: in the first
two works, semantic coherence is assessed as the product of all the partial the-
matic fit scores for all the event-participant combinations within a sentence, while
in Chersoni et al. (2017b) semantic coherence is assessed as the cosine similar-
ity between the arguments of the sentence and the prototype vector of current
argument expectations, which is dynamically updated as new information from
newly-saturated arguments comes in.
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5 | Model

The main purpose of this work is to introduce a compositional distributional model
of sentence meaning which integrates vector addition with GEK activated by lexi-
cal items.

The model is directly inspired by Chersoni et al. (2016, 2017a,b), whose archi-
tecture is based on the Memory, Unification and Control (MUC) model (see figure
5.1), introduced in the field of neurosciences by Peter Hagoort (Hagoort, 2013),
which includes the following components:

• Memory corresponds to linguistic knowledge stored in long-term memory.
More than a traditional lexicon, this component resembles a repository of
constructions; (Goldberg, 2003), as it is made up by unification-ready struc-
tures, which bear different degrees of internal complexity, as in the Parallel
Architechture framework (Culicover and Jackendoff, 2006);

• Unification refers to the constraint-based assembly in working memory of
the constructions stored in Memory into larger structures, with contributions
from the linguistic and extra-linguistic context;

• Control is responsible for relating language to joint action and social inter-
action.

The model by Chersoni et al. (2016) specializes the content of the memory
component, against the hypothesis of a modular lexicon, and populates it with
generalized knowledge about events.
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In particular, it relies on two major assumptions:

• lexical items are represented with distributional vectords (i.e., embeddings)
within a network of relations encoding prototypical knowledge about events;

• the semantic representation of a sentence is a structured object incremen-
tally integrating the semantic information cued by lexical items.

Our model follows this approach, therefore consisting of two main components:

• a Distributional Event Graph (DEG) that models a fragment of semantic
memory and is activated by lexical units (Section 5.1);

• a Meaning Composition Function, that dynamically integrates informa-
tion activated from DEG to build the semantic representation for the whole
sentence (Section 5.2).

Figure 5.1: Image from Hagoort (2015), showing the processing cycle subserving seman-
tic unification: inputs are conveyed from to the inferior, middle, and superior temporal
gyri (1), where lexical information is activated. Signals are hence relayed to the inferior
frontal gyrus (2), where neurons respond with a sustained firing pattern. Signals are then
fed back into the same regions in temporal cortex from where they were received (3).
A recurrent network is thus set-up, which allows information to be maintained online, a
context (green circle) to be formed during subsequent processing cycles, and incoming
words to be unified within the context.
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We expect the model to be able to reflect the processing differences shown in
picture 4.3. The hypothesis is that, when facing sentences like (22) and (23), that
share the same main verb check, the facilitatory effect observed during process-
ing for the first sentence could be modeled if distributional information about the
expected object is triggered by the subject in the first place.

(22) The journalist checked the spelling.

(23) The mechanic checked the spelling.

5.1 Distributional Event Graph

In order to represent GEK cued by lexical items during sentence comprehension,
we explored a graph-based representation of distributional information, for both
theoretical and methodological reasons: in a graph-like data structure, structural-
syntactic information and lexical information can naturally coexist and be related.
Moreover, vectorial distributional models often struggle with the modeling of dy-
namic phenomena, as it is often difficult to update the recorded information, while
graph-like data structures are more suitable for situations where relations among
items change over time, thus making graph-based structures more suitable for cog-
nitively inspired models.

The data structure would ideally keep track of each event automatically re-
trieved from corpora, indirectly containing information about schematic or under-
specified events, by abstracting over one or more participants from each recorded
instance (see figure 5.2).

Events can be therefore cued by all the potential participants, in line with
psycholinguistic research, with a strength that depends on the distributional (i.e.,
statistical) association between the triggered event and the participant.

Because DEG is supposed to contain distributional information, we automati-
cally harvested events from corpora, using syntactic relations as an approximation
of semantic roles for event participants.
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Figure 5.2: Image courtesy of Alessandro Lenci. The picture shows how an underspeci-
fied event such as student (sbj) - book (obj), representing generic events of students per-
forming actions on books, is derived by several fully specified event involving the same
participants.

From a dependency parsed sentence we identified an event by selecting a se-
mantic head and grouping all its syntactic dependents together (figure 5.3).

read/V

student/N book/N library/N

Shakespeare/N University/N

Figure 5.3: Reduced version of the dependency parsing for the sentence The student is
reading the book about Shakespeare in the university library. Three events are identified.

Since we expect each participant to be able to trigger the event and conse-
quently any of the other participants, a relation can be created and added to the
graph from each subset of each group extracted from sentence (table 5.1).
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Groups hyper-edges added to the graph

read/V, student/N, book/N, library/N

(read/V, student/N, book/N, library/N)
(read/V, student/N, book/N)
(read/V, student/N, library/N)
(read/V, book/N, library/N)
(student/N, book/N, library/N)
(read/V, student/N)
(read/V, book/N)
(read/V, library/N)
(student/N, book/N)
(student/N, library/N)
(book/N, library/N)

book/N, Shakespeare/N (book/N, Shakespeare/N)
library/N, university/N (library/N, university/N)

Table 5.1: Relations extracted from the dependency parsed sentence shown in Figure 5.3.
Syntactic relations are omitted for clarity reasons.

It is worth remarking that we do not stick to the verbal notion of event as to
an occuring situation, which is usually described by a verb with its arguments,
but we take a broader perspective on the notion of event as more general notion
of relation holding among entities that constitue and event, state or situation.
Any content word can be the head of an event structure, and this allows us to
extend our model to a larger range of compositional phenomena, including also
those included within a noun phrase, such as adjectives or relative clauses).

The resulting structure is therefore a weighted hypergraph, as it contains re-
lations holding among groups of nodes, and a labeled multigraph, since each
edge or hyperedge is labeled in order to represent the syntactic pattern holding in
the group.

An hypergraph (figure 5.4) is a generalization of a graph in which an edge can
join any number of vertices. More formally, an hypergraph H is a pair H = (V,E)

where V is a set of vertices and E is a subset of P(V ) \ ∅, namely the set of all
possible subsets of V , excluding the empty set ∅.
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Figure 5.4: A hypergraph H = (V,E) with 9 vertices and 5 hyperedges.

DEG is also a multigraph as, given a set of vertices, there could be more than
one relation holding among them, which means having more than one event with
the same participants (e.g., the two events dog bites man and man bites dog have
the same set of participants and can be both represented in the graph trough dif-
ferent sets of labels).

In DEG, each node is a lexical embedding, and edges link lexical items partic-
ipating to the same events (i.e., its syntagmatic neighbors), thus representing the
event itself. Edges are weighted with respect to the statistical salience of the event
given the item. Weights determine the event activation strength by linguistic cues.

As graph nodes are embeddings, given a lexical cue w, DEG can be queried on
two different levels:

• retrieving the most similar nodes to w (i.e., its paradigmatic neighbors),
using a standard vector similarity measure like the cosine (table 5.2, top
row);

• retrieving the closest associates of w (i.e., its syntagmatic neighbors), using
the weights on the graph edges (table 5.2, bottom row).
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para. neighbors
essay, anthology, novel, author,
publish, biography, autobiography,
nonfiction, story, novella

synt. neighbors
publish, write, read,
include, child, series,
have, buy, author, contain

Table 5.2: The 10 nearest paradigmatic (top) and syntagmatic (bottom) neighbours of
book/N, extracted from DEG. By further restricting the query on the graph neighbors,
we can obtain for instance typical subjects of book as a direct object (people/N, child/N,
student/N, etc.).

This outset resembles in a sense the twofold representation introduced in Erk
and Padó (2008), while generalizes the idea to non explicit relations holding
within event participants. Moreover, it allows for the activation of strictured sets
of participants rather than binary relations alone, and makes it possible to modu-
late semantic preferences in context.

5.1.1 Graph Implementation

Event extraction

Although extensible to larger spans of texts, we tailored the construction of the
DEG to simple syntactic structures, restricting to the definition of an event as a
verbal syntactic head and its main nominal dependents (i.e., subject, direct object,
prepositional modifiers).

A number of normalization operations are involved in the process, in partic-
ular: passive sentences are brought back to the active voice, enhanced dependen-
cies1 are also considered for the event construction and only relations within a
fixed linear distance from the head are kept into account.

1Enhanced dependencies are a formalism introduced in the Universal Dependencies schema,
in order to make some of the implicit relations between words more explicit, and augment some
of the dependency labels to facilitate the disambiguation of types of arguments and modifiers.
These are useful for handling phenomena such as propagation of conjuncts (in the basic repre-
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Relations were automatically extracted from the concatenation of a 2018 dump
of Wikipedia, BNC, and ukWaC corpora, parsed with the Stanford CoreNLP Pipeline
(Manning et al., 2014), considering sentences longer than 5 tokens and shorter
than 100, in order to avoid possible parsing errors.
We restricted to verbs and nouns with a frequency greater than 100, removing
those that contained more than half of non alphabetic characters and that started
with special symbols (e.g., !, #, @...). Proper nouns were substituted with a
generic placeholder, or with the recognised entity (e.g., person, city, organiza-
tion...) when provided by the parsing.
From this set of relations, for reasons due to the evaluation setting described in
Chapter 6, we only considered relations among pairs of entities, labeled with a
syntactic pattern that reflected the role of the entity in the group it belongs to.
In many of the following examples, the resulting structure will be therefore a di-
rected, labeled multigraph (see figure 5.5).

Each lexical node in DEG was associated with its embedding. For reasons
that will be made explicit in the following chapter, we used the same training
parameters as in Rimell et al. (2016), since we wanted our model to be directly
comparable with the previous results on the dataset. We built a lemmatized 100-
dim vector space model, with skip-gram with negative sampling (SGNS, Mikolov
et al. (2013a)), setting minimum item frequency at 100 and the context window at
10.

sentation, the governor and dependents of a conjoined phrase are all attached to the first conjunct,
often leading to very long dependency paths between content words. The enhanced representa-
tion contains dependencies between the other conjuncts and the governor and dependents of the
phrase), controlled/raised subjects (the basic trees lack a subject dependency between a controlled
verb and its controller or between an embedded verb and its raised subject, in the enhanced graph,
there is an additional dependency between the embedded verb and the subject of the matrix clause)
and relative clauses (relative pronouns are attached to the main predicate of the relative clause,
typically with a nsubj or obj relation, while in the corresponding enhanced graphs, the relative
pronoun is attached to its antecedent with the special ref relation and the antecedent is attached as
an argument to the main predicate of the relative clause).

54



While Rimell et al. (2016) built their vectors from a 2015 download of Wikpedia,
we needed to cover all the lexemes contained in the graph and therefore we used
the same corpora from which the DEG was extracted.2.

Figure 5.5: The picture shows an example of DEG created from pairs of items co-
occurring in the same event. Lexical items (nodes) are linked though syntactic patterns
that express their semantic role in the original, complete event.

Weighing Scheme

Each event - syntactic labels pairs were then weighted with a smoothed version of
Local Mutual Information (LMI) in order to allow for the activation of the event
with respect to the salience that the event has for each involved participant.
Each event is here represented as a list of lexemes e = w1, ...wn, each associated
with a label in the list of syntactic labels p = r1, ...rn.

2Results obtained by our embedding on standard datasets are collected in section 6.3.2
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We are interested in computing

LMIα(e, p) = f(e, p)log
P̂ (e, p)

P̂α(e)P̂ (p)
(5.1)

in the case of pairs, this formula rephrases as:

LMIα(w1, w2, r1, r2) = f(w1, w2, r1, r2)log
P̂ (w1, w2, r1, r2)

P̂ (w1)P̂α(w2)P̂ (r1, r2)
(5.2)

where, for each item x:

P̂α(x) =
f(x)α∑
x f(x)

α
(5.3)

Through some easy calculations, formula 5.2 reduces to the following:

LMIα(w1, w2, r1, r2) =

= f(w1, w2, r1, r2)log(
f(w1, w2, r1, r2)

f(w1)f(w2)αf(r1, r2)
× C × Cα)

(5.4)

where C =
∑

x f(x) is the total number of pairs and Cα =
∑

x f(x)
α is the sum

of element frequencies in the smoothed version.

The smoothed version (with α = 0.75) was chosen in order to alleviate PMIs
bias towards rare words Levy et al. (2015), which arises especially when extend-
ing the graph to more complex structures than pairs.

For each lexeme and for each event, weights were normalized using z-scores
in order to alleviate discrepancies due to huge frequency differences.
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Storage and Query

The focus of the representation is a fine-grained representation of the relations
holding among entities.
The most traditional way to represent relational information is by means of a Re-
lational Databases, namely sets of tables representing highly structured data. In
the relational framework, relations are typically inferred through the interaction
of particular fields such as foreign keys.

This approach has many drawbacks:

• the organization of a relational database is rigid and must be defined in
advance, making it difficult to introduce new relations overtime;

• JOINS are computed at query time by matching primary and foreign keys
of all rows in the connected tables, producing compute-heavy and memory-
intensive operations;

• many-to-many relations are modelled through the introduction of join ta-
bles, making in a sense entities more important than relations in the repre-
sentation.

Graph databases (Robinson et al., 2013) try to overcome these issues by pro-
viding a model that more closely resembles the real data organization.
Each node in the graph database model directly (i.e., physically) contains a list of
relationship records that represent the relationships to other nodes, thus allowing
direct access to the connected nodes in case of traditional JOIN operations, allow-
ing a huge advantage in performance, as well as a more intuitive data modeling
phase.

For these reasons, we employed a graph database management system, Neo4j3,
for the actual implementation of DEG.
Neo4j does not support hyperedges, therefore these must be modeled in a stan-
dard property graph introducing extra entities (nodes) that represent the subgraph
made of the items that partecipate in the hyperedge. In our model, these extra
nodes actually end up explicitly representing event structures (see figure 5.6).

3https://neo4j.com/
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Figure 5.6: Nodes of the left side of the graph are lexical nodes, wich are connected to
event nodes (on the right side). Event nodes are labeled with the first word of each lexical
item involved (e.g., SW stands for student writes, SWT stands for student writes thesis...).
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5.2 Meaning Composition Function

Me model sentence comprehension as the creation of a semantic representation
SR, which summarizes two different yet interacting levels of information, that are
equally relevant in the overall representation of sentence meaning:

• one component is constituted by the linear semantic representation of the
sentence, which is a context-independent tier of sentence meaning that ac-
cumulates the lexical content of the sentence: we will refer to this compo-
nent as lexical meaning component (LM);

• a second component aims at representing the most probable event, in terms
of its participants, which can be reconstructed from DEG from the lexical
items of the sentence. It corresponds to the GEK activated by the single
lexemes (or by other contextual elements) and integrated into an overall se-
mantically coherent structure representing the event expressed by the sen-
tence and its associated information. We call this structure Active Context
(henceforth, AC): it is incrementally updated during processing, when a new
input is integrated into existing information. AC represents the structured set
of information that is available to the agent when processing a sentence.

5.2.1 Lexical Meaning

The LM component is a function of the out-of-context representations (i.e., typ-
ically general purpose distributional vectors) attached to the lexemes of the sen-
tence. Therefore, for each lexeme w, its vector w⃗ is retrived from DEG.

These discrete representations are then composed into a single one, as ex-
tensively shown in literature, through algebraic operations such as addition or
element-wise multiplication.
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student read book

−−−−−→
student

−−→
read

−−→
book

⊕ ⊕ −−→
LM

Figure 5.7: The figure shows how vectors, triggered by lexical items in the sentence, are
composed in order to build up the LM component of the semantic representation.

5.2.2 Active Context

The AC component is the event knowledge component (EK): each lexical item in
the sentence activates a portion of GEK, that is integrated into the already active
context through a process of mutual re-weighting that aims at maximizing the
overall semantic coherence.

The behavior and the internal architecture of the AC data structure can be spe-
cialized through a number of parameters, that will be described in the following
sections.
In general, AC represents at each processing step a set of expectations about up-
coming linguistic events, and to this end three basic operations are required by the
framework:

• Start a new processing phase (inizialize operation);
• Process a new piece of input (retrieve operation);
• Link new information to existing data (merge operation).

Initialization

At the outset of each processing phase, for example at the beginning of a new
sentence, a new AC is initialized, with respect to a certain amount of knowledge,
as described below.

While DEG contains linguistic knowledge, broadly speaking semantic knowl-
edge about the world, comprehension can be certainly influenced by other, non-
linguistic or context-specific factors as well: this might include personal biases,
presuppositions, interaction of domain knowledge, but can also be used to keep
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track of discourse-related expectations, for instance. Since AC aims at modelling
linguistic processing, this pre-existing information can be formalized in terms of
the active context itself (i.e., expectations about linguistic events), thus allowing
us to dynamically weigh new data.

Because this kind of non-linguistic interaction does not strictly pertain to the
analysis of the compositional phenomena that we focus on in this thesis and would
require a much wider work on the topic, we will not explore the influence of any
non-linguistic input.

Retrieval from DEG

The retrieve operation represents the interface with the memory component
(i.e., DEG), and it is concerned with the creation of new meaning blocks repre-
senting both lexical meaning and triggered event knowledge.

At each step of the processing, a new pair (w, synrel) is encountered, where w
is a token and synrel is the syntactic label attached to it in the dependency parsing,
which is taken as an approximation of its semantic role.

The event knowledge block (figure 5.8) represents the set of expectations that
the lexeme generates about the sentence.
At first, w is used to perform a query on the DEG, activating fellow participants to
the most likely events in which the lexeme participates. The paradigmatic neigh-
bours of w (henceforth, p-neighbours) can as well be activated when w is encoun-
tered. Therefore, the distributional neighbourhood (either considering the k top
neighbours or setting an activation threshold) of the lexeme could be also added
in this phase and participate in the query for event knowledge.

Syntactic labels provide the mapping between expectations and linguistic re-
alization of participants, and are needed in order to perform the query to DEG.
In principle, expectations work also on syntactic structure (e.g., when we en-
counter a more agentive subject such as killer we are more likely to expect a
patient in a direct object role, while when we encounter nouns like reharsal or
play we are more likely to expect locations or timings, etc.) and need not to be
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single labels but can rather be set of roles defining the most likely event structure.
Although this represents an interesting area for further research, we did not explic-
itly address it because of the exploratory nature of our experiments (described in
the following chapter). Instead, in order to query the graph, both the syntactic role
associated with the current lexeme and the triggered (i.e., expected) ones are used
as input. Therefore, in the present case, event knowledge consists of something
like ”the typical direct objects of student as a subject” or ”the typical locations of
concert as a direct object”.
The set of lexemes retrieved from the graph for each target syntactic relation
therefore constitutes the weighted set of syntagmatic neighbours (referred to as
s-neighbours) of the current lexeme.

To sum up, for each processed word pair in the sentence, an hypothesis about
the content of the whole sentence is generated, composed of expectations about
each semantic role fulfilled in the event, in particular:

• expectations about the role filled by the lexeme itself are represented by its
vector (and possibly by its p-neighbours);

• expectations about sentence structure and other participants are collected in
weighted list of vectors of its s-neighbours.

Linking new information

The merge operation is concerned with the integration of newly retrieved data
into AC. As described in the previous section, when new pairs (wi, ri) are en-
countered, they are incrementally added to AC. Each add operation has two main
effects (see figure 5.9):

• the event knowledge triggered by the lexeme is weighted according to EK

already available in AC;

• the newly retrieved information can be used to reweigh what is already
available in AC. This process integrates new and old information by in-
creasing the relevance of the context information that is more semantically
coherent with the new items.
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DEG
event knowledge

student, nsubj

student
pupil
teacher.......

nsubj

study
read
graduate

.......

root

drink

book
beer
thesis.......

dobj

Figure 5.8: The image shows the internal architecture of an EK block, which is created
thanks to the add operation. The interface with DEG is shown on the left side of the
picture, each internal list of neighbors are labeled with their expected syntactic label in
the sentence. The nsubj list is composed by student, which is the input lexeme, and
the list of its p-neihgbors, while the other block are composed of lists of s-neighbors of
student. All the items are intended as vectors, arrows are not shown for space reasons.
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Both s-neighbours and p-neigbours typically come with an activation weight
with respect to the item that activated them (e.g. cosine similarity, mutual infor-
mation...). We modeled the interaction with pre-existing information in AC as a
bi-directional weighting process, that allows more salient participants to float to
the most prominent positions in AC, while less fitting ones are gradually removed.
In practice, each time a weighted list needs to be compared with AC, all the rele-
vant triggered elements in AC are aggregated in a compact representation (i.e., a
weighted centroid of the head of the list) and the target list is re-ranked according
to the similarity (e.g., cosine similarity between vectors) of each element of the
list with the created centroid. The same happens for the lists contained in AC,
which are re-weighted according to the centroids of newly retrieved ek (the effect
is shown in figure 5.10).

It is reasonable to introduce a number of constrains on how this interaction
works, as it might not have the same strenght throughout the whole composition
process. While this is partially modeled by association scores in the EK compo-
nent, it can also be explicitly set, thus defining, in a sense, the architecture of the
composition process. This is meant to capture two different kinds of phenomena:

• interaction can be propagated up to a fixed distance (in terms of tokens)
from the processed one, or with a strength depending on linear distance;

• some semantic roles can show stronger interactions than others (e.g., sub-
jects can pose more constraints on objects than locations).

5.3 Semantic representation and similarity

In order to perform semantic tasks on the basis of the semantic representation
SR = (LM, AC), a more compact representation of AC is needed.
Different tasks may require different scoring functions, we provide here an outline
of our implementation of a similarity measure between semantic representations.
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AC

student
teacher
advisor.......

nsubj

study
read

work.......

root

book
thesis
.......

dobj

student
teacher
journalist
.......

study

read
write

.......

paper

book
journal

.......material

Figure 5.10: The picture shows the new AC, which has integrated information from the
new EK block shown in figure 5.9. Lists are reweighted in order to maximize semantic
coherence.

While vectors in LM are easily summed up, event participants are represented,
for each encountered lexeme, through weighted lists of vectors, one for each role
(i.e., syntactic label) in the sentence. Although different aggregating functions are
possible, in our implementation we hypothesize that this happens in two steps: at
first a weighted centroid is created from the top k vectors triggered for each label,
then these centroids are summed up in order to get a single vector (see figure 5.11).

In practice, the semantic representation obtained from the process is composed
of two vectors, that represent two different aspects of sentence meaning and that
are meant to be compared independently. The two computed scores can, if needed,
be later composed.
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AC

nsubj

root

.....

.....

dobj
.....

−−−→
nsubj

−−→
root

−−→
dobj

⊕

⊕

−→
AC

Figure 5.11: The figure shows how vectors derived from AC are composed in order to
build up the AC component of the semantic representation.

5.4 Traditional frameworks and AC

Our framework is not intended to be in contrast with all the classic compositional
operations, that typically take into account out-of-context distributional objects
for each lexeme in the sentence and compose them through algebraic operations.
All these models are concerned with making the LM component of our SR more
representative of sentence meaning. Our proposal is to enrich such models with
event knowledge.

The addition model, for example, is easily implemented in our framework as
follows:

SR = (
∑
w∈S

w⃗, ∅) (5.5)

where S is the set of words in the sentence, and the EK component is empty as no
event knowledge is used in the model.
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6 | Evaluation

6.1 RELPRON

6.1.1 Dataset description

RELPRON (Rimell et al., 2016) consists of 1,087 pairs formed by a target noun
labeled with a syntactic role (either subject or direct object) and a property ex-
pressed as [head noun] that [verb] [argument] when the target has the role of a
subject, or [head noun] that [argument] [verb] when the target is the object of the
relative clause. For instance, in table 6.1 the full list of properties for the target
noun treaty are reported:

OBJ treaty/N: document/N that country/N sign/V
OBJ treaty/N: document/N that delegation/N negotiate/V
OBJ treaty/N: document/N that ruler/N conclude/V
OBJ treaty/N: document/N that state/N ratify/V
OBJ treaty/N: document/N that government/N violate/V
SBJ treaty/N: document/N that end/V war/N
SBJ treaty/N: document/N that establish/V union/N
SBJ treaty/N: document/N that require/V ratification/N
SBJ treaty/N: document/N that grant/V independence/N
SBJ treaty/N: document/N that cede/V land/N

Table 6.1: Full list of RELPRON properties for the term treaty. For the same head noun
(document), RELPRON contains the following target terms: account, assignment, ballot,
bond, form, inventory, lease, license, specification, treaty.
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The dataset was built by manually selecting candidate terms and head nouns
from WordNet1 (choosing sufficiently non ambiguous nouns that occurred at least
5,000 times in the source corpus), and automatically extracting from corpora (a
2010 dump of Wikipedia and the BNC corpus) triplets in which the terms occurred
either in subject or object position, that were later manually filtered in order to
keep only good identifying properties (i.e., a property able to distinguish a term
from other hyponyms of its head noun).
Overall, the data set includes 565 subject and 522 object properties, with 15 head
nouns and 138 terms, divided into a development and a test set as shown in table
6.2.

Test Set Development Set
Head Noun Sbj Obj Head Noun Sbj Obj
phenomenon 38 42 quality 16 65
activity 46 37 organization 54 45
material 30 52 device 40 36
room 38 42 building 37 32
vehicle 38 41 document 21 48
mammal 41 29 person 59 27
woman 20 17 player 29 9
scientist 58 0
TOT 309 260 TOT 256 262

Table 6.2: Total number of subject and object properties by head noun in RELPRON.

6.1.2 Composition techniques description

Rimell et al. (2016) apply a number of composition techniques, briefly described
below, to distributional vectors, testing both count vectors and neural embeddings,
obtaining the results summarized in tables 6.3 and 6.4.

1Miller et al. (1990)
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Lexical baselines - the vector representation of the property is set to the verb or
the argument vector, involving no composition.

Arithmetic - vector addition and elementwise vector product of the vectors for
the lexical items of the property.

Frobenius Algebra - implementation of the categorial framework, described in
equations 6.1-6.2 for the subject and object case respectively (⊙ stands for
elementwise multiplication):

n⃗⊙ (V⃗ o⃗) (6.1)

n⃗⊙ (V⃗ T s⃗) (6.2)

RPTensor - two third order tensors (R
s

and R
o

) are built to represent the rel-
ative pronoun in the subject and object case respectively, which combine
with the head noun vector and the vector resulting from the verb-argument
composition

PLF - implementation of the Practical Lexical Function model: subject and verb
matrices combine with their arguments by tensor contraction, and the re-
sulting vectors are added (equations 6.3 - 6.4).

R
s
n⃗+ V

o
a⃗ (6.3)

R
s
a⃗+ V

o
n⃗ (6.4)

SPLF - Simplified Practical Lexical function model, verb and argument are com-
bined by tensor contraction as in PLF, but the resulting verb-argument vec-
tor is combined with the head noun by vector addition.

FLPF - Full Practical Lexical Function model: decouples the interaction of the
relative pronoun with the head noun from the interaction with the com-
posed verb-argument phrase. Therefore, a third order tensor is not needed
anymore and sparsity problems of RPTensor are mitigated.
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Categorial Baselines (Varg, Vhn) - Varg is the verb matrix (subject or object,
as appropriate) multiplied by the argument, without considering the head
noun. Vhn, conversely, is the verb matrix (subject or object, as appropriate)
multiplied by the head noun, without considering the argument.

Method Count Count-SVD Skip-Gram

Lexical
−→arg 0.272 0.386 0.347
−−→
verb 0.138 0.179 0.176

Arithmetic

−→
hn⊙−→arg ⊙

−−→
verb 0.364 0.123 0.181

−→
hn+−→arg +

−−→
verb 0.386 0.442 0.496

−→arg +
−−→
verb 0.331 0.407 0.401

−→
hn+−→arg 0.339 0.425 0.450
−→
hn+

−−→
verb 0.231 0.229 0.264

Categorial Frobenius 0.277 0.023 0.030

Table 6.3: MAP scores of Lexical, Arithmetic, and Frobenius algebra methods on the
RELPRON development set using Count, Count-SVD, and Skip-Gram vectors, and rela-
tional verb matrices.

Results are expressed in terms of Mean Average Precision (henceforth, MAP),
as the evaluation was done on a ranking task: the ideal system is supposed to
rank, for each term, all properties corresponding to that term above all other prop-
erties2. MAP is defined as:

MAP =
1

N

N∑
i=1

AP (ti) (6.5)

where Average Precision is defined as follows for term ti:

AP (t) =
1

Pt

M∑
k=1

Prec(k)× rel(k) (6.6)

2The task is analogous to an Information Retrieval task (Schütze et al., 2008), where docu-
ments are required to be ranked given a query.
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where Pt is the number of correct properties for term t in the dataset, M is the
total number of properties in the dataset, Prec(k) is the precision at rank k, and
rel(k) is an indicator function which is equal to one if the property at rank k is a
correct property for t, and zero otherwise.

Method Development Test
SPLF 0.496 0.497
Addition 0.496 0.472
PLF 0.444 0.433
FPLF 0.405 0.387
RPTensor 0.380 0.354
Varg 0.448 0.397
Vhn 0.219 0.204

Table 6.4: MAP scores of composition methods on the RELPRON development and test
sets using Skip-Gram vectors.

As shown by the results, vector addition is still among the best performing
compositional models, which is able to match the way more complex SPLF.

6.1.3 More on RELPRON plausibility

To the best of our knowledge, RELPRON, although hand-created by the authors,
has never been validated with respect to speakers’ judgements. The properties
were in fact chosen as good descriptors for a certain target, but the authors them-
selves point out that they could as well be suitable as definitions of other targets.
See for example sentences (24)-(30), provided for the target nouns cinema (sen-
tences (24)-(25)) and theater (sentences (26)-(30)):

(24) building that show movie

(25) building that screen film

(26) building that audience fill

(27) building that audience exit

(28) building that show film
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(29) building that host premiere

(30) building that sell popcorn

Evaluating the extension of this phenomenon in the dataset could be crucial to
the correct understanding of results, therefore we collected similarity judgements
on the developement portion of RELPRON. This allows us to carry out a more
in-depth analysis of the pitfalls of both the model and the dataset, and moreover
introduces a correlation task which was not present in the original work.

In order to collect similarity judgements for both highly typical paraphrases
and atypical paraphrases, we randomly sampled, for each RELPRON target with
n associated properties, n additional properties from targets that shared its same
head noun. The resulting dataset is therefore composed of 1,036 items, 518 from
RELPRON developement set and 518 randomly generated.

Participants were asked to provide a score between 1 and 7 (standard Likert
scale) according to how typical a paraphrase was judged as a definition for the
given target. Instructions provided to workers are reported below:

Hi!

In this test you will find questions like the following ones:

”Would you define a cow as a mammal that a farmer milks?”

”Would you define an astronomer as a scientist that uses a tele-
scope?”

For each question you are asked to provide a score between 1 (un-
der no circumstances would you choose the provided definition)
and 7 (the definition is very typical or common for the questioned
word).
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Try to use also intermediate scores (e.g., when a definition does
not include the most typical features of the questioned word, but you
would still apply it in some circumstances).

Use your knowledge of everyday situations and activities to answer
the questions!

We explicitly referred to knowledge of everyday situations and activities, as
we did not want the workers to interpret definition as a sort of a dicionary defini-
tion, which typically lists a series of necessary and sufficient conditions, but more
as a paraphrase that would be suitable in everyday usage to refer to the target item
or to further clarify its meaning.

We collected on average 5.33 judgements for each item, with the distributions
showed in figure 6.1.

As expected, original RELPRON items get on average higher values than ran-
domly generated ones, no difference is shown in variance distributions on items
judgements (figure 6.2) and variances result higher for medium scores and lower
for higher/lower scores (figure 6.3).

Figure 6.1: The plot shows the distributions of collected judgements for RELPRON items
(blue, centred around 4.7) and for the randomly generated ones (red, centred around 2.6).
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Figure 6.2: The plot shows the distributions of variance on collected judgements for
RELPRON items (blue) and for the randomly generated ones (red).

Figure 6.3: The plot shows the distributions of variance dependently on judgements
scores. As expected, the pattern seems non-linear.

Moreover, when grouped according to head noun, judgements seem to differ
significantly (figure 6.4), showing that some classes are more well defined than
others.

The fact that these differences are statistically significant is confirmed by the
KRUSKAL-WALLIS test3, which yielded the results reported in table 6.5.

3A non parametric test was run as the Shapiro test for normality did not report significant
values for all variables.
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f-value p-value
True items 13.12 0.0411
Random (false) items 82.518 1.077604347758283e-15

Table 6.5: Results of KRUSKAL-WALLIS analysis of judgements

The post-hoc analysis (DUNN test, figure 6.5) confirms that player is the head
noun that behaves most differently from the others, with respect to true items
(exhibiting lower judgements on average), while device seems the most neatly de-
fined class. Randomly generated items, moreover, behave more differently than
true items, thus suggesting that not all RELPRON properties share the same tipical-
ity with respect to the target they are associated to. While all the tested properties
seem to be well paired with their target, they could as well be interpreted as good
definitions for other targets in the dataset and this needs to be taken into consider-
ation when evaluating any model on the dataset.

Figure 6.5: The plots show significance levels for pairwise comparisons for each head
noun, with respect to true items (left plot) and random items (right plot).
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6.2 Transitive sentence similarity dataset

6.2.1 Dataset description

The transitive sentence similarity dataset consists of 108 pairs of transitive sen-
tences, each annotated with human similarity judgments collected through the
Amazon Mechanical Turk platform. Each transitive sentence is composed by a
triplet subject verb object. Here are two pairs with high (31) and low (32) similar-
ity scores respectively:

(31) a. government use power

b. authority exercise influence

(32) a. team win match

b. design reduce amount

6.2.2 Composition techniques description

Milajevs et al. (2014) apply a number of composition techniques, briefly described
below, obtaining the results summarized in table 6.6.

In particular, they apply standard vector addition and elementwise product
of the vectors for the lexical items of the sentence, and a number of different
techniques that mainly differ with respect to how the tensor for the verb is built.

Relational - V erb is computed through the formula
∑

i

−−→
Sbji ⊙

−−→
Obji, where

−−→
Sbji

and
−−→
Obji are the subjects and objects of the verb across the corpus. The

sentence is then composed as V erb⊙ (
−→
Sbj ⊗

−−→
Obj)

Kronecker - Ṽ erb is computed through the formula
−−−→
V erb ⊗

−−−→
V erb, where

−−−→
V erb

is the distributional vector of the verb. The sentence is then composed as
Ṽ erb⊙ (

−→
Sbj ⊗

−−→
Obj)

Frobenius - The expansion of relational verb matrices is obtained by either copy-
ing the dimension of the subject into the space provided by the third tensor
(Copy-Sbj,

−→
Sbj ⊙ (

−−−→
V erb ×

−−→
Obj)), or copying the dimension of the object
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in that space (Copy-Obj,
−−→
Obj ⊙ (

−−−→
V erbT ×

−→
Sbj)); furthermore, we can take

addition, multiplication, or outer product of these, which are referred to by
Frobenius-Add, Frobenius-Mult, and Frobenius-Outer.

Results are expressed in terms of Spearman’s rank correlation coefficient (ρ),
which assesses how well the relationship between two variables can be described
using a monotonic function4.

Method Spearman’s ρ
Verb only 0.561
Addition 0.689
Multiplication 0.341
Kronecker 0.561
Relational 0.618
Copy-sbj 0.405
Copy-obj 0.655
Frobenius-Add 0.585
Frobenius-Mult 0.387
Frobenius-Outer 0.622

Table 6.6: Results obtained by Milajevs et al. (2014) on the transitive sentence similarity
datasets. The reported results are obtained employing neural embeddings. The first line
of the table refers to a baseline obtained computing the cosine similarity between the
verbs of the sentences. Milajevs et al. tested the same composition techniques also on
count based vectors, and it must be reported that the highest score with vector addition is
obtained with one of those vector spaces (0.73).

As for the RELPRON dataset, vector addition is still the best performing model,
and some models are not even able to outperform the lexical baseline involving
only the verb.

4A monotonic function between ordered sets is a function that preserves or reverses the given
order.
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6.3 Models description

6.3.1 Dataset representation

Both RELPRON and the trantive sentences dataset are composed of triplets.

Each property in RELPRON was represented as a triplet ((hn, r), (w1, r1), (w2, r2)),
where hn is the head noun, w1 and w2 are the verb and the argument of the relative
clause, ordered depending on the semantic relation of the target. Each element of
the triplet is associated with its syntactic role in the property sentence: in partic-
ular, the head noun shares the syntactic role of the target (either subject or direct
object).

Each sentence of the transitive sentences dataset was represented as the triplet
((w1, nsbj), (w2, root), (w3, dobj)).

6.3.2 Semantic representation

Because the sum model has proven to be the best performing one for both datasets,
we aimed at testing the impact of generalized event knowledge within each of the
lexical baselines presented in Rimell et al. (2016) and Milajevs et al. (2014).

Given a sentence or a RELPRON item, each model builds therefore a semantic
representation SR = (LM, AC), where:

• the AC component is empty when no event knowledge is considered, there-
fore implementing the standard baselines and addition models;

• the LM component is empty for the models employing only event knowl-
edge triggered by the sentence;

• different subsets of the lexical items of the sentence can be selected to take
part in the semantic representation, thus generating all the different base-
lines and their enriched versions.
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Since RELPRON properties and sentences from the transitive sentence simi-
larity dataset are both triplets, for both datasets 7 groups can be considered, one
for each non empty subset of the elements of the triplet. As far as RELPRON is
concerned, however, we do not consider the model involving the head noun alone
as the same head noun is shared by many targets in the dataset, thus the ranking
task performed on the head noun alone would not be directly comparable to the
other results.

Lexical Meaning

The lexical meaning (LM) component of each SR was built by adding the distribu-
tional vectors attached to the lexical items in the sentence.

One important parameter of the model is the kind of word embeddings em-
ployed to represent words (and the lexical nodes of DEG as well). We reproduced
the vector space of Rimell et al. (2016), as described in chapter 5.
We summarize here the results obtained by our vector space on standard datasets
(see tables 6.7 and 6.8), as these must be considered in order to properly evaluate
the model results.
It may be the case, in fact, that more specialized embeddings would capture differ-
ent aspects of lexical meaning and therefore sensibly influence the performances
of the model.

Tested datasets include:

RG - Rubenstein and Goodenough dataset, Rubenstein and Goodenough (1965)
WS, WS-SIM, WS-REL - WS353 dataset for testing attributional and related-

ness similarity, Finkelstein et al. (2001); Agirre et al. (2009)
YP - verb similarity, Yang and Powers (2006)
MTurk - Mturk dataset for attributional similarity, Radinsky et al. (2011)
RW - Rare Words dataset, Luong et al. (2013)
MEN - Bruni et al. (2014)
SimLex - Hill et al. (2015)
SimVerb - verb similarity, Gerz et al. (2016)
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RG WS WS-SIM WS-REL YP MTURK RW MEN SimLex SimVerb
GloVe 100dim 0,676 0,601 0,602 0,491 0,454 0,581 0,366 0,696 0,258 0,179
SGNS 100dim 10w 0,802 0,781 0,782 0,647 0,526 0,639 0,446 0,766 0,341 0,260

Table 6.7: Results of the implemented vector space model (SGNS 100dim 10w) on stan-
dard datasets. Performances are comparable to standard results achieved in literature by
general purpose models. The table also provides results obtained by 100 dimensions
GloVe vectors, as reference.

RG WS WS-SIM WS-REL YP MTURK RW MEN SimLex SimVerb
number of items 65 202 203 252 130 771 2034 3000 999 3500
GloVe 100dim (% of coverage) 100 96,53 96,55 94,44 100 100 87,61 76,17 86,29 99,94
SGNS 100dim 10w (% of coverage) 100 100 100 99,60 100 98,57 58,65 76,07 86,29 100

Table 6.8: The table shows, for each dataset, how many items of each dataset are present
in the distributional space.

Active Context

For each item, an AC is initiated empty. Triplets are then processed in linear order,
adding elements one by one to the AC. Each time an element is added, it activates
some event knowledge with respect to the semantic roles relevant for the dataset.
In particular, as far as RELPRON is concerned, event knowledge is triggered only
for the syntactic relation of the target, whereas for the transitive sentences dataset
all syntactic relations (i.e., subject, root, direct object) are considered.
For each relation r:

• if the lexeme bears the relation r itself, it is added as event knowledge (e.g.,
in the case of student-nsubj, the vector of student is added as event knowl-
edge for the nsubj relation);

• otherwise, the top 50 s-neighbours, along with their LMI as weight, are
extracted from the graph and added to AC. This list is reweighted with
respect to previous information as follows: for each pre-existing list in AC,
labeled with the same relation r, the top 20 elements of its s-neighbours list
are aggregated in a weighted centroid. All the centroids are then summed
up, and the newly retrieved s-neighbours list is reweighted with respect to
cosine similarity with the vector representing AC.
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Example

We provide an example of the reweighing process the property document that
store maintains, whose target is inventory:

• at first the head noun document is encountered: its vector is activated as
event knowledge for the object role of the sentence and constitutes the con-
textual information against wich GEK is re-weighted. At this point, the co-
sine similarity between inventory and the AC (which contains only the head
noun vector) is 0.530. The most similar items to the AC would be general
nouns such as documentation, archive, dossier...;

• the noun store is encountered, and expectations for objects of store as a sub-
ject are queried from DEG. These include product, range, item, technology,
etc. in the top positions, and if the centroid were built from the top of this
list, the cosine similarity with the target would be around 0.62;

• s-neighbours of store are re-weighted according to the fact that AC con-
tains some information about the target already, namely the fact that it is a
document. The re-weghting process has the effect of placing on top of the
list elements that are more similar to document, so now we find collection,
copy, book, item, name, trading, location, etc., improving already cosine
similarity, that goes up to 0.68;

• similarly, s-neighbours of maintain are extracted from DEG (these are: stan-
dard, relationship, position, record, level, etc.) and reweighted with respect
to the current of AC, that is document+objects of store as a subject, thus
getting database, page, website, site, register, property, list, etc. as top
items, and improving cosine similarity with inventory, from 0.55 to 0.61.
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6.3.3 Scoring

Given two semantic representations SR1 = (
−−→
LM1,

−−→
AC1) and SR2 = (

−−→
LM2,

−−→
AC2)

(these are the property and the target in case of RELPRON, and two sentences in
case of the transitive sentence similarity dataset), the final score is computed as
follows:

s = cos(
−−→
LM1,

−−→
LM2) + cos(

−−→
AC1,

−−→
AC2) (6.7)

where cos(x⃗, y⃗) is standard cosine similarity.

6.4 Results

Tables 6.9-6.10 summarize the results obtained by all models, on both datasets.
The results show that event knowledge alone (i.e., information in AC) obtains
scores which are not far from the baseline, while combining of the two parts of
the semantic representation sistematically improves the basic scores. In particular,
the information provided by the event knowledge in AC is able to outperform the
simple vector addition.

RELPRON

LM AC LM+AC

verb 0,18 0,18 0,20
arg 0,34 0,34 0,36
hn+verb 0,27 0,28 0,29
hn+arg 0,47 0,45 0,49
verb+arg 0,42 0,28 0,39
hn+verb+arg 0,51 0,47 0,55

Table 6.9: The table shows results in terms of MAP for the RELPRON dataset. Except for
the case of verb+arg, the models involving event knowledge in AC always improve the
baselines.
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transitive sentences dataset
LM AC LM+AC

sbj 0.432 0.475 0.482
root 0.525 0.547 0.555
obj 0.628 0.537 0.637
sbj+root 0.656 0.622 0.648
sbj+obj 0.653 0.605 0.656
root+obj 0.732 0.696 0.750
sbj+root+obj 0.732 0.686 0.750

Table 6.10: The table shows results in terms of Spearman’s ρ on the transitive sentences
dataset. Except for the case of sbj+root, the models involving event knowledge in AC

always improve the baselines. p-values are not shown because they are all equally signif-
icant (p < 0.01).

We also evaluated correlations on judgments provided by human annotators
on the RELPRON dataset. The overall results are shown in table 6.11. Here, event
knowledge does not seem to improve the baselines and the standard sum model
still shows the best results on average. However, the dataset in this case was com-
posed of true RELPRON items, which were supposed to get high human judgments,
along with randomly created items, which were supposed to get low scores. Ta-
ble 6.12 shows correlations coefficients for the two subsets respectively: while on
true items the role of lexicalized information is greater, when it comes to random
items event knowledge improves the baselines systematically. This suggests that,
while pure lexical information is enough for certain situations, event knowledge
seems to be able to provide better disambiguation when needed.
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RELPRON

LM AC LM+AC

verb 0.37 0.32 0.37
arg 0.56 0.48 0,55
hn+verb 0.24 0.29 0.28
hn+arg 0.49 0.49 0.52
verb+arg 0.60 0.40 0.55
hn+verb+arg 0.54 0.44 0.51

Table 6.11: The table shows Spearman’s ρ coefficients between the series of scores pro-
vided by the model and those provided by human annotators.

RELPRON items RANDOM items
LM AC LM+AC LM AC LM+AC

verb 0,06 0,08 0,07 0,26 0,23 0,27
arg 0,22 0,16 0,20 0,27 0,32 0,31
hn+verb 0,01 0,04 0,02 0,13 0,21 0,18
hn+arg 0,18 0,15 0,18 0,21 0,28 0,26
verb+arg 0,20 0,06 0,14 0,31 0,30 0,33
hn+verb+arg 0,16 0,09 0,14 0,25 0,24 0,26

Table 6.12: The table shows Spearman’s ρ coefficients between the series of scores pro-
vided by the model and those provided by human annotators, for true RELPON items and
randomly generated items respectively.
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7 | Error Analysis

Rimell et al. (2016) provide some in depth analysis of their result on the RELPRON

dataset. They point out four main aspects, namely the role of:

• the grammatical function of the term (subject or object);

• the head noun;

• the intersective semantics of the relative clause construction (how often is
the head noun correctly identified and how well are properties ranked, given
the head noun);

• lexical overlap and plausible, yet not annotated descriptors in the dataset.

We follow the same analysis scheme, aggregating the second and the third
point as they are better explained when seen together.

7.1 Accuracy by grammatical function

Rimell et al. (2016) find their models to be on average balanced with respect to
subject and object predictions. The most unbalanced model among theirs is the
FPLF model, which shows much better perfomances on subjects than on objects.
They impute this discrepancy to the different amount of training data available for
subject and object relative clauses respectively.

Tables 7.1, 7.2, 7.3 show our results for the lexical baselines, the models in-
volving only AC and the complete models respectively.
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LM verb arg hn+verb hn+arg verb+arg hn+verb+arg
subject 0,21 0,44 0,30 0,55 0,49 0,60
object 0,20 0,39 0,30 0,52 0,48 0,59
∆ 0,01 0,06 0,00 0,04 0,01 0,01

Table 7.1: The table shows MAP results, for each model involving only the LM compo-
nent, for subject and object relations separately.

AC verb arg hn+verb hn+arg verb+arg hn+verb+arg
subject 0,19 0,41 0,29 0,47 0,22 0,48
object 0,19 0,34 0,29 0,51 0,38 0,52
∆ 0,00 0,06 0,00 -0,04 -0,16 -0,04

Table 7.2: The table shows MAP results, for each model involving only the AC component,
for subject and object relations separately.

While models involving only the sum of lexical vectors show balanced results,
a value stands out in table 7.2. The composition of event knowledge elicited by
verb and argument seems much better at predicting the object than the subject.
This may suggest that subjects are more likely to trigger, distributionally speak-
ing, their object rather than the other way round, but it would be in contrast with
the fact that the argument alone predicts subjects better than objects.

One relevant parameter of the models is that they work in the linear order in
which words are found in the sentence. The verb+arg model, therefore, works dif-
ferently when run on subject clauses than on object clauses. In the subject case, in
fact, the verb is found first, and then its expectations are used to reweigh the ones
of the object. In the object case, on the other hand, things go the opposite way: at
first the subject is found, and then its expectations are used to reweigh the ones of
the verb (see table 7.4).
When testing the same model, but in reverse order of activation (the second word
of the property and then the first one), we find opposite results, with a MAP of 0.41
for subjects and 0.21 for objects.
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LM+AC verb arg hn+verb hn+arg verb+arg hn+verb+arg
subject 0,23 0,44 0,33 0,58 0,46 0,60
object 0,20 0,37 0,32 0,53 0,45 0,60
∆ 0,03 0,07 0,01 0,04 0,01 0,00

Table 7.3: The table shows MAP results, for each model involving both the LM component
and the AC, for subject and object relations separately.

subject clause object clause
w1 w2 order V - O S - V
w2 w1 order O - V V - S

Table 7.4: The table shows the differences between standard linear order (first row) and
reverse order (second row) for subject and object relative clauses. Values in bold refer to
the models that show best performances.

It seems that, when arguments, which are nouns, are encountered first, event
knowledge is more precise and better at predicting the target. This is in line with
the fact that arguments alone perform better than roots alone, and could be related
to both the fact that verb perform distributionally worse than nouns on standard
similarity tasks, and the fact that information derived by arguments has also in
general better correlations with human judgements, and seems therefore a better
source for event knowledge than the one provided by verbs.

7.2 Accuracy by Head Noun and intersective seman-
tics of relative clauses

Rimell et al. (2016) evaluate MAP by averaging APs obtained for each term, still
computed on the ranking of all RELPRON properties, divided by head noun, and
show stable results across head nouns for all methods, concluding there are no out-
liers among head nouns in the ability of the methods to compose relative clauses.
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Figures 7.1, 7.2 and 7.3, when compared with data reported in table 7.5, show
in our opinion a different perspective: the fact that some targets have on average
higher or lower similarities with their head noun plays as a strong bias in the per-
formances of the models.
Looking at the ranked plots (on the right of each pair of plots), in particular, it
seems pretty clear that tendencies tend to invert when passing from the first three
models (the ones that do not involve any knowledge on the head nouns) to the
second three (all of which include the head noun).
Head nouns such as organization and document, which are on average not very
similar to their targets, show a sensible drop of performances in the models where
hn is involved, while device, which in particular shows the lowest scores on the
verb only model, increases sensibly its performances in the head noun + verb
model, presumably as an effect of the fact that device targets show quite high sim-
ilarity with their head noun.

Rimell et al. look also at the integration of the semantic contribution brought
by the head with the contribution of the verb and the argument, and break down
the task into two subtasks that demonstrate performances on the two aspects inde-
pendently:

• considering the top ten ranked properties for each term from the full devel-
opment set, and calculating the percentage of them which have the correct
head noun;

• looking at the MAP scores when the ranking of properties for each term is
restricted to properties with the correct head noun.

The first analysis (percentage of correct head nouns ranked among the top 10
properties, table 7.6) only confirms that general similarity between the target and
its head noun plays a role in the performances.
As far as the second point is concerned (MAP scores within each head noun group),
table 7.7 shows no clear trends. Results are overall not satisfactory: discrepancies
between the ability to rank the right head noun and the ability to discriminate
between properties bearing the same head noun have two possible explanations.
Either the model is not able to distinguish between two targets belonging to the
same family, or the properties are not informative enough.
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Figure 7.1: The two plots show performances of the LM models, for each class defined
by the head nouns. The left plot shows the actual MAP values, while the right plot shows
their rank.

Figure 7.2: The two plots show performances of the AC models, for each class defined
by the head nouns. The left plot shows the actual MAP values, while the right plot shows
their rank.

Figure 7.3: The two plots show performances of the LM+AC models, for each class de-
fined by the head nouns. The left plot shows the actual MAP values, while the right plot
shows their rank.
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mean cosine similarity
head noun with head noun among targets
player 0.558 0.545
building 0.528 0.426
device 0.495 0.401
quality 0.463 0.375
document 0.444 0.324
organization 0.378 0.334
person 0.359 0.350

Table 7.5: The table shows, for each head noun, the average cosine similarity between
the head noun and each target noun in the class (first column) and the average cosine
similarity between target nouns within the same class.

Some insights on this could come by looking at the discrepancies between
these results and the scores obtained through human annotation. Looking at box-
plot 6.4, we would expect that device would get the highest scores as it seems the
most easy group to split between true items and random (i.e., false) items. This
is not the case probably because the class of devices has one clear outlier, which
is the target noun fan (its AP is only 0.01). It is clearly polysemous, and it is in-
tended in the dataset as ”an electric device with blades that turn quickly, used to
move the air around”, or ”an object made of folded paper or other material that
you wave with your hand in order to move the air around”, but its distributional
neighbourhood (crowd, fanbase, die-hard, booing, favourite, audience, spectator,
cheer...) shows that the meaning of fan in the distributional model is caught in
the sense of ”someone who admires and supports a person, sport, sports team,
etc...”1. By removing fan from the picture, scores go up to 0.66 in the LM model
and to 0.60 in the LM+AC model.
This kind of polysemy results in fact in no ambiguity for the human speaker, as
the senses are very different, and therefore has no effect on the human judgements
which interpret fan in the right sense, but needs to be explicitly addressed compu-
tationally.

1Definitions from the Cambridge online dictionary, https://dictionary.

cambridge.org/
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quality organization person document building player device overall

LM

verb 0,52 0,53 0,47 0,41 0,46 0,62 0,47 0,49
arg 0,52 0,71 0,42 0,49 0,58 0,78 0,49 0,55
verb+arg 0,64 0,72 0,56 0,51 0,67 0,88 0,55 0,63
hn+verb 0,77 0,57 0,55 0,63 0,94 1 0,84 0,74
hn+arg 0,77 0,8 0,47 0,73 0,95 1 0,78 0,77
hn+verb+arg 0,78 0,79 0,61 0,7 0,93 1 0,75 0,78

AC

verb 0,68 0,64 0,55 0,44 0,62 0,58 0,58 0,58
arg 0,66 0,68 0,53 0,49 0,65 0,86 0,62 0,62
verb+arg 0,76 0,64 0,61 0,52 0,66 0,8 0,62 0,65
hn+verb 0,83 0,53 0,61 0,57 0,94 0,98 0,8 0,73
hn+arg 0,78 0,69 0,64 0,62 0,94 1 0,78 0,76
hn+verb+arg 0,82 0,65 0,68 0,62 0,97 1 0,88 0,79

LM + AC

verb 0,67 0,56 0,55 0,47 0,64 0,64 0,51 0,57
arg 0,65 0,72 0,53 0,56 0,65 0,82 0,55 0,63
verb+arg 0,77 0,67 0,59 0,54 0,68 0,86 0,57 0,65
hn+verb 0,86 0,59 0,65 0,64 0,96 1 0,86 0,78
hn+arg 0,81 0,77 0,6 0,68 0,94 1 0,78 0,78
hn+verb+arg 0,8 0,74 0,65 0,71 0,97 1 0,8 0,80

Table 7.6: The table shows, for each set of models (LM, AC and LM+AC models), and for
each head noun, the percentage of properties sharing the correct head noun within the top
10 ranked properties for each target.

7.3 Common errors in descriptions

Two common sources of errors on RELPRON, as pointed out by the authors, are
lexical overlap between terms and properties, which was intentionally included
in the dataset, , and the fact that there exist properties which are plausible de-
scriptions for a term, but were not annotated as gold positives in the first place.
The former refers to the fact that there exist in the dataset properties like person
that religion has, referred to the target follower, while there also is the word reli-
gion as a target in RELPRON, and the latter to properties such as organization that
recruits soldier, which is associated to navy in the dataset, but could as well be a
plausible description for the target noun army.
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quality organization person document building player device

LM

verb 0,37 0,35 0,33 0,30 0,27 0,32 0,28
arg 0,45 0,65 0,50 0,51 0,66 0,52 0,45
verb+arg 0,56 0,68 0,56 0,58 0,70 0,53 0,53
hn+verb 0,39 0,35 0,34 0,31 0,35 0,37 0,29
hn+arg 0,50 0,67 0,49 0,52 0,72 0,55 0,54
hn+verb+arg 0,61 0,67 0,54 0,61 0,75 0,57 0,58

AC

verb 0,25 0,32 0,33 0,34 0,26 0,29 0,23
arg 0,36 0,61 0,45 0,52 0,57 0,44 0,36
verb+arg 0,39 0,46 0,40 0,48 0,44 0,32 0,33
hn+verb 0,37 0,35 0,39 0,40 0,30 0,34 0,33
hn+arg 0,48 0,59 0,47 0,58 0,67 0,61 0,45
hn+verb+arg 0,53 0,55 0,52 0,65 0,66 0,59 0,44

LM + AC

verb 0,34 0,37 0,34 0,34 0,27 0,32 0,26
arg 0,39 0,66 0,50 0,56 0,65 0,42 0,46
verb+arg 0,51 0,62 0,51 0,61 0,62 0,42 0,46
hn+verb 0,37 0,39 0,40 0,37 0,32 0,35 0,32
hn+arg 0,51 0,66 0,53 0,59 0,70 0,60 0,52
hn+verb+arg 0,65 0,68 0,57 0,68 0,75 0,60 0,55

Table 7.7: The table shows, for each set of models (LM, AC and LM+AC models), and
for each head noun, the MAP obtained in the ranking task where only properties with the
correct head noun are considered.

We looked at lexical overlap a bit closer, and selected the possible properties
that share a large extent of their meaning with the target. In order to do so, for
each target we looked at all properties, excluding its own ones, which had at least
one word with cosine similarity greater that 0.8 (i.e., a synonym) with the target.
The complete list of found properties is given in table 7.8. The table show that
the phenomenon, although intentionally introduced by the authors, is not equally
spread throughout the dataset, and for this reason its effect is difficult to evaluate.
Organization has the greatest number of lexically overlapping properties, but they
are equally spread between inter-class properties (i.e., properties of targets that
share the same head noun) and intra-classes properties (i.e., properties of classes
that bear a different head noun), while player, which is also the head noun with the
fewest targets and properties (5 and 38 respectively), has 5 properties that show
lexical overlap, all of which are referred to targets in the same class.
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As shown by the table, despite the fact that complete models stills struggle
with the issue, models involving only event knowledge seem to be not affected at
all by lexical overlap. And this comes without much loss of accuracy as the top
ranked properties for nearly all the considered items are gold ones (exceptions are
team, which ranks player properties in the first two positions, army wich ranks
garrison properties in the first two positions - but army and garrison are more
similar that 0.8 - and balance which ranks other qualities in the top 4 positions).

As far as the second issue is concerned, Rimell et al. introduce another rank-
ing task, treating properties ad queries and ranking terms by their similarity to a
property.
We opted for using human judgements in this phase, and, from the whole set of
1036 items, we created four subsets on the basis of the expected result (RELPRON,
thus true item or randomly generated, thus false item) and the average collected
score (above or below 3.5 out of 7). The items distribute themselves in the four
resulting groups as shown by table 7.9 and figure 7.4.

The fact that 112 false items received a score above 3.5 suggests that it would
be worth investigating more deeply the complete set of possible co-occurrences
between targets and properties. Because they were only randomly selected, how-
ever, they do not yield a complete picture of the phenomenon, and for this reason
we’re not speculating on them.
On the other hand, the 76 true items that received low scores are worth investigat-
ing (they are fully reported in tables 7.10): the player class is the one that shows
the greatest problems, with one item (bowler), that gets completely removed from
the dataset.
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hn target property true target LM AC LM+AC

F building observatory device that observatory have telescope 1 15 2
F device telescope building that contain telescope observatory 1 29 2
F device fan building that fan pack arena
T device button device that button replace dial 1 19 2
F document lease building that brewery lease pub
F organization religion person that religion have follower 1 6 1
F organization family building that family rent house 2 47 3
F organization family person that lose family survivor 1 2 1
F organization family building that shelter family house 3 28 2
T organization garrison organization that seize garrison army 1 4 2
T organization garrison organization that troops defeat army 7 8 6
T organization team organization that team join division 2 38 3
T organization army organization that army install garrison 7 30 12
T organization army organization that force besiege garrison 1 2 1
F person traveler device that traveler set watch 1 31 2
F person philosopher quality that scholar dispute accuracy 7 25 12
T player pitcher player that pitcher strike batter 1 3 1
T player pitcher player that pitcher face batter 2 8 3
T player batter player that batter face pitcher 3 5 13
T player batter player that strike batter pitcher 1 2 1
T player batter player that walk batter pitcher 2 3 2
F quality balance document that have balance account 1 115 10

Table 7.8: The table shows the complete list of the target-property pairs for which lexical
overlap has been detected (bold terms are the ones whose cosine similarity with the target
is greater than 0.8). The fist column indicated whether or not the given target and the true
target of the property share the same head noun. The last three columns show at which
position the properties are ranked for the target for which some lexical overlap occurs.
Two rows of the table are grayed. In the first case lexical overlap is found for the term
fan, but the two occurrences refer to two different meanings, and fan is an outlier of the
dataset. In the second case, the overlap occurs with lease, but it is intented as a noun
when it is considered as a target, and as a verb in the property, for this reason the pair has
a different status from the others in the table.
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RELPRON item RANDOM item
<= 3.5 76 406
> 3.5 442 112

Table 7.9: The table shows how the set of items for which human judgements were
collected distributes itself against the two variables being a true RELPRON item and having
received a score higher than 3.5 (i.e., having been rated as a true item).

Figure 7.4: The boxplot shows the distribution of scores in the four classed individuated
by table 7.9.
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7.4 Final remarks

The results above, however partial, express well how faceted could the argumen-
tation be on the performances of a model. We attempted to follow the outline
proposed by Rimell et al. (2016), in order to make results as comparable as possi-
ble, and tried to introduce new information derived from our experiments.

Our results suggest that RELPRON, despite being hand-crafted and fairly small,
shows many variables that could affect the performances in any way. Among the
issues, there is the fact that the task has been defined as a ranking task on the
whole dataset. This approach has two main issues: the performance on a batch
of items depends greatly on which properties are included in the batch, as many
variability factors (i.e., head nouns, lexical overlap) are not equally distributed
throughout the dataset, moreover it is difficult to replicate the task with human
annotators, making it hard to know whether our results reflect the way humans
produce compositional meaning.

In order to overcome some of the issues, the complete term-properties matrix
could be annotated with similarity judgements provided by native speakers: this
would naturally let a batch of stable items emerge, and could give some insights
on a hypothetical human performance on the complete ranking task as well.
Nonetheless, a broader and more naturalistic dataset is needed to properly evaluate
compositionality models. As far as this is concerned, the structure of RELPRON is
well suited to the task, as it makes it possible to isolate singular aspects of sentence
meaning and evaluate them directly, while many among the bigger datasets do
not allow for this kind of fine-grained analysis. For these reasons, we hope that
RELPRON will be further expanded and validated.
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rating head noun target property
1,83 SBJ bond document that pay coupon
2,6 OBJ form document that council return
3 OBJ lease document that council terminate

3,17 SBJ license document that allow use
3,17 OBJ specification document that design meet
3,25 OBJ form document that parent sign
3,33 OBJ bond document that issuer redeem
3,4 SBJ specification document that provide functionality
3,5 OBJ bond document that government float

rating head noun target property
1,75 SBJ dial device that make revolution
2,33 OBJ button device that jeans feature
2,8 OBJ pipe device that insulation cover
3 SBJ telescope device that collect light

3,17 OBJ pipe device that shepherd play
3,2 OBJ dial device that timer use
3,2 SBJ saw device that make plank
3,2 SBJ telescope device that have mirror
3,4 SBJ dial device that show time

rating head noun target property
1,6 SBJ weight quality that cause subsidence
2 OBJ weight quality that opinion carry

2,2 SBJ weight quality that damage skeleton
2,4 OBJ mobility quality that fracture impair

2,67 OBJ rhythm quality that defibrillation restore
3 OBJ accuracy quality that interference reduce
3 OBJ accuracy quality that scholar dispute

3,2 OBJ wisdom quality that hermit dispense
3,2 OBJ morality quality that ministry emphasize
3,2 OBJ accuracy quality that speed affect
3,4 SBJ rhythm quality that determine timing
3,4 OBJ likelihood quality that distribution determine
3,5 OBJ accuracy quality that uncertainty limit

rating head noun target property
1,6 OBJ division organization that company sell
1,6 SBJ mission organization that monitor election
2 OBJ family organization that mobster represent

2,2 SBJ mission organization that convert population
2,33 SBJ railway organization that serve quarry
2,6 OBJ family organization that father abandon
2,6 SBJ garrison organization that hold city
3 SBJ railway organization that build station

3,17 SBJ railway organization that carry slate
3,2 SBJ navy organization that blockade port
3,2 SBJ navy organization that establish blockade
3,2 SBJ division organization that undergo merger
3,4 OBJ division organization that corps include

rating head noun target property
1,25 SBJ bowler player that dominate batsman
1,4 SBJ bowler player that finish spell
1,6 SBJ bowler player that use yorker
1,8 OBJ bowler player that humidity assist
2 SBJ bowler player that dismiss batsman

2,2 OBJ bowler player that batsman face
2,25 SBJ golfer player that hit wedge
2,57 SBJ bowler player that concede run
2,8 OBJ bowler player that batsman dominate
3 SBJ golfer player that have handicap

3,2 SBJ golfer player that use iron
3,29 SBJ pitcher player that walk batter
3,4 SBJ bowler player that take wicket

3,43 SBJ batter player that reach base
3,5 SBJ pitcher player that snap wrist

rating head noun target property
2 OBJ survivor person that seaplane spot

2,25 OBJ killer person that soldier be
2,4 OBJ traveler person that consulate help
3 OBJ killer person that profiler find
3 SBJ bomber person that target marketplace

3,17 SBJ philosopher person that analyze ontology
3,2 OBJ expert person that panel include
3,4 SBJ expert person that author monograph
3,4 OBJ expert person that novice become
3,4 SBJ survivor person that suffer flashback
3,5 SBJ expert person that describe model

rating head noun target property
3,2 OBJ arena building that rider enter

3,33 OBJ abbey building that order establish
3,33 OBJ pub building that brewer sell
3,33 SBJ temple building that hold festival
3,4 SBJ house building that line street
3,4 OBJ house building that hamlet have

Table 7.10: The tables show the complete set of pairs target - property that were actual
RELPRON items, but were rated as false by human annotators. The pairs are split by head
noun.
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8 | Conclusion

Our work stemmed from the fact that it is now well established even in linguistic
literature that event knowledge plays a significant role during semantic compre-
hension.

We provided a basic implementation of a model for meaning composition,
which aimed at being incremental and cognitively plausible. While still relying
on vector addition, our results suggest that distributional vectors do not encode
sufficient information about event knowledge, and that, in line with psycholin-
guistic results, activated generalized event knowledge plays an important role in
building semantic representations during online sentence processing.
This is also suggested by the fact that results obtained on the whole RELPRON

dataset (training set + test set), which are reported in table 8.1, still show some
beneficial effect of event knowledge. Because of the analysis discussed in chapter
7, these results need not be interpreted as a verdict on the usefulness of our kind
of approach, and is just meant as an initial work towards a linguistically motivated
and cognitively inspired model of sentence meaning composition.

The introduction of event knowledge has proven to overcome some of the is-
sues, such as extreme sensibility to lexical overlap, that standard vector addition
shows, especially on the considered datasets. Although this represents a promis-
ing result, many aspects need further investigations.

To start with, just a few among the many parameters that make it possible to
specialize the framework have been explored. In particular, DEG has been created
taking into account only pairs of lexical items, while it would be interesting to
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LM AC LM + AC

Development Set 0.51 0.47 0.55
Test Set 0.47 0.37 0.46
Full RELPRON 0.42 0.36 0.44

Table 8.1: The table shows the results obtained by the best performing model on REL-
PRON, as shown by table 6.9, on the test set and the full dataset. Results on each row are
not comparable in terms of intensity, as the ranking task is performed on sets of different
sizes.

build it with more structured sets of participants. This would allow us to explore
a number of untouched areas concerning event knowledge.
In our setting, expectations work independently for each lexical item and for each
target syntactic role of the sentence: when considering the case of advisor as a
subject, for example, we retrieve check, write, teach as roots, and thesis, book,
course as direct objects. However, it is clear that advisor writes thesis is less
salient than advisor checks thesis as an event, and this does not happen because
of the selectional preferences of the main verb. If participants could be retrieved
jointly rather than independently, we would also have more structured predictions
about upcoming items. Moreover, this would allow to generate expectations on
sentence structure, while we are only querying DEG to get content (i.e., words).
Also related to this topic is the fact that, with the complete graph, events could be
compared with respect to their neighbourhood on the graph, thus allowing simi-
larity queries on the whole structure, rather than on the single participants.

With respect to pure vectorial models, the interface with the graph has two
main drawbacks:

• the storage requires much more space than vectors;

• much more computational overload is placed at the processing phase.

We believe that both these drawbacks can be mitigated with appropriate algorith-
mic techniques, that allow for data compression and approximation with bounded
error, which is enough for our purposes.
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As far as the meaning composition function is concerned, we did not explore
the use of p-neighbours, nor did we explore different implementations of the event
knowledge blocks, the ones that collect expectations about upcoming fillers: one
possibility for this would be to provide clusters of words, rather than lists, thus
allowing for a more refined view of possible different areas of meaning for the
retrieved event. Aside from this, many more options are available and worth ex-
ploring.

We only validated our framework on two, pretty small and non naturalistic
datasets. The next step would be to try the same approach on a bigger dataset, that
includes more syntactic structures than standard S-V-O sentences. Our analysis
was meant as an exploratory one, and we needed to rule out of the picture any pos-
sible noisy variable in order to evaluate as more genuinely as possible the impact
of event knowledge. Longer or more complex sentences, in fact, typically include
a whole range of different arguments, and are more prone to parsing errors: these
factors would have expanded too much the space of possibilities.

Moreover, many issues on RELPRON are far from being set. A more general
statistical analysis of the results could still shed light on interesting aspects and
could be helpful in identifying more precisely which aspects of compositional
meaning are better modeled through the introduction of generalized event knowl-
edge.

Last but not least, an interesting path would be to integrate non linguistic in-
formation into the model. There is an increasing interest among linguists toward
how multimodal information interacts with the linguistic processing. While we
only provided the outline for a language model, the same approach could in prin-
ciple be extended through the distributional analysis of other sources of perceptual
input, and could similarly be accessed via linguistic as well as non linguistic cues,
providing a more holistic and grounded model of comprehension, as suggested by
psycholinguistic and cognitive results.
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