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The long-term aim is to provide a distributional model of
non-adjacent structures (i.e., constructions), as they emerge from
the linear linguistic stream through general-purpose statistical
learning mechanisms.

Why? Linguistic creativity depends on the ability to re-use existing
chunks to build up new linguistic instances.
With no boundary between lexical and grammatical level,
non-adjacent or partially filled chunks play the biggest part in
explaining productivity.
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Motivations: Non-Adjacent Dependencies

(1) John has played the piano beautifully.
(2) John is playing the piano beatifully.
(3) The betterer John plays the piano, the more relaxed we feel.
(4) John plays the piano beautifully and loves to sing.
(5) Not only does John play the piano beautifully, but also he

sings.
(6) John has studied this piece for long in order to learn how to

play it so beautifully.

The emergence of non-adjacent dependencies represents a puzzle,
and it is tied to two aspects that cannot be disentangled from
linguistic research: the time-dependent nature of the linguistic
material, and the constraints posed on by memory and processing.
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Motivations: Segmentation vs. Representation

Computational semantics has
often taken segmentation for
granted, focusing on
representation.

Statistical learning (SL) has
often ignored the function that
chunks play in the utterance,
focusing on segmentation.

The advent of the newest ANN architectures and multi-modal (e.g.,
vision) models has shown how addressing the two issues together
has a positive impact on the results and on the ability of the models
to generalize.
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Motivations: Learning

The question about how do we build and attach meaning
representations to linguistic symbols has for long been central to
usage-based models of language acquisition.

In order to be better integrated with the statistical learning and
cognitive-based community, we propose to frame the same question
in a different formulation:

“How do we identify the linguistic structures that are better suited,
or more likely to cue the desired meaning?”
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From linearity to hierarchy



The emergence of structure

In a letter-string recall task (Cornish et al. 2017), participants were
asked to reproduce a series of 15 string that they had been
previously been trained on. The recalled strings were used as inputs
for the next participants, in a series of 10 epochs (each involving 10
participants).

Across generations:

• learnability of the strings increases: the overall accuracy of the
recalled items in terms of normalized edit distance increases,
and not at the cost of a collapse of the string sets into shorter
sequences

• the amount of reuse of chunks significantly departs from
randomicity

• Natural-language like structure (as compared to a set of strings
extracted from the CHILDES corpus) generally emerges
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Now or Never bottleneck (Christiansen e Chater 2016)

The fleeting nature of memory and the speed of the linguistic input
stream creates a bottleneck: the brain must compress and recode
linguistic input as rapidly as possible (Chunk-and-Pass).

Language acquisition is learning to process rather than inducing a
grammar: acquiring a language requires learning how to create and
integrate the right chunks rapidly, before current information is
overwritten by new input.

Moreover, this is not unique to language: e.g., sensory memory is rich
in detail but decays rapidly unless it is further processed.
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Underlying computational mechanisms

A memory-based perspective (Christiansen e Chater 2016; Altmann
2017) helps in developing a model that takes into account the
relationship between episodic and semantic memory.

Neurobiologically-inspired models mostly rely on complementary
learning systems (CLS, McClelland, McNaughton e O’reilly 1995;
Schapiro et al. 2017) theory: while the hippocampal structures
support rapid encoding of different instances, the neocortex allows
for slower recognition of regularities.

The computational principles by which the learning happens must
be able to explain both general tendencies and modality- and
stimulus- specific constraints.
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Extraction and Integration framework (Thiessen, Kronstein eHuf-
nagle 2013)

The majority of mechanistic accounts that explain statistical learning
focused on sensitivity to conditional relations (i.e., transitional
probabilities for word segmentation), ignoring sensitivity to
statistical cues (i.e., frequency and variability) that requires
integrating information across exemplars.

We can distinguish between two distinct streams (Thiessen 2017),
aimed at detecting conditional and distributional regularities
respectively. The former inform a chunk-based memory processes
that stores exemplars, while the latter are employed to capture
central tendencies and group elements into categories.
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Tools: Distributionalism



Distributional patterns of co-occurrence

The attempt to explain structural properties of language by means of
distributional patterns of co-occurrence has indeed a long-standing
history in linguistic research (Erk 2012; Lenci 2018), with roots in the
structuralist distributional analysis (Harris 1954; Braine 1963).

Besides being a quantitative method for semantic analysis, DS could
as well be regarded as a cognitive hypothesis about the form and
origin of semantic representations (Miller e Charles 1991; Lenci 2008),
an hypothesis tested also in language acquisition studies (Twomey,
Chang e Ambridge 2014; Twomey, Chang e Ambridge 2016).
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Distributional methods in statistical learning

“The search for an answer can begin with the cogent assumption
that people learn how to use words by observing how words are
used.” - (Miller e Charles 1991)

Statistical Learning (SL), which had initially focused on word
learning (Reber 1967; Saffran, Aslin e Newport 1996), has extended to
treating the processing of regularities in sensory input in general, in
a more comprehensive theory of information processing (Armstrong,
Frost e Christiansen 2017): experiencers possess the cognitive
abilities to take track of distributional patterns, and this
contributes to shaping expectations and behavioral responses.
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Tools: Spiking Neural Networks



An issue of plausibility

Artificial Neural Networks (ANNs) and the connectionist paradigm in
general have provided a solid framework to implement many of the
theories of statistical learning and grammar induction.

ANNs have also been accused of biological implausibility:

• they involve non-local transfer of real-valued errors and weights,
while biological neuronal systems assume a kind of firing rate
code for transmitting information throughout the brain

• regularities are usually and most effectively extracted through
overlapping representations, but non-overlapping item-based
representations are equally valuable tools for learning
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The Spiking Model

Some of the mentioned drawbacks could be overcome by employing
Spiking Neural Networks (SNNs, Maass 1997)1.

Like ANNs, SNNs are directed graphs made of nodes (neurons) and
edges (synapses).

Interesting features:

• naturally deal with stream-like data over time
• operate using spikes, discrete events that take place at points in
time, rather than continuous values

1a framework is presented in Hazan et al. 2018
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The Spiking Neuron

Each biological neuron has a membrane, which regulates the
production of a spike depending on the received signals.

Using just one variable for modelling the membrane, the state of the
neuron at time t is given by its initial state u0 plus some additional
potential due to the received spike stream:

u(t) = u0 + a
∫ t

0
D(s) · w · σ(t− s)ds (1)

where a is positive constant, D(s) is a linear filter (e.g., modulates
memory loss), w the synaptic weight (excitatory or inibitory) and σ a
series of N input spikes, σ(t) =

∑N
i=1 δ(t− ti).

A spike is elicited at time t if u(t) ≥ uth, and the potential is
consequently reset to u0.
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Learning algorithms for SNNs: a glimpse

Learning is local both with respect to the neighborhood of the
synapse and in time, and largely inspired by the basic Hebbian rule,
(”cells that fire together wire together”)

Backpropagation is difficult to apply, both unsupervised and
supervised training is possible. The basic idea in the unsupervised
case is that the temporal relation between the pre- and post-
synaptic spike influences the strength of the connection 2:

∆w =

Ae
−(|tpre−tpost|)

τ tpre − tpost ≤ 0,A > 0
Be

−(|tpre−tpost|)
τ tpre − tpost > 0,B < 0

(2)

2STDP, Spike-timing-dependent plasticity
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Deep architectures? (Tavanaei et al. 2018)

Only a few tasks have been explored so far, mostly focused on the
Modified National Institute of Stan- dards and Technology (MNIST)
dataset (LeCun, Cortes e Burges 2010).

Upscaling biologically inspired algorithms such as STDP to more
complex architectures still represents a challenge.

Some architectures, as Liquid State Machines (LSM, Maass,
Natschläger e Markram 2002), are natively equipped with spiking
neurons to reproduce the dynamics of cortical circuits.

Few applications to language modeling have been proposed (Costa
et al. 2017): although not outperforming LSTMs, subLSTMs3 achieved
a comparable level of perplexity in a simple word-prediction task.

3LSTM in which the multiplicative gating operations were replaced with substractions
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What now?



Some existing models

• R-Grams (Ekgren, Gyllensten e Sahlgren 2018) - based on the
Re-Pair algorithm (a dictionary-based compression algorithm,
Moffat e Larsson 2000), involves the idea that the extraction of
abstract chunks or schemas from the input must implement
some form of compression

• TRACX2 - (Mareschal e French 2017) - argues that both
transitional probabilities learning and chunking can coexist in
one system, as it is one single mechanism that underlies
sequential learning, Hebbian-style learning. An important
aspect is that is that chunks are graded in nature rather than
all-or-nothing
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R-Grams (Ekgren, Gyllensten e Sahlgren 2018)

Algorithm:
given an initial alphabet of symbols, i.) find the pair ab that occurs
most frequently in text, ii.) replace all occurrences of ab with a new
symbol A, iii.) add the rule A→ ab in the grammar, iv.) repeat until
no pair occurs more than a defined threshold or the vocabulary size
exceeds memory limits.

The implementation has a number of drawbacks:

• the complete text is maintained available throughout the whole
process

• it’s impossible to account for non-adjacent chunks (unless
creating a combinatorial explosion)

• it involves a mixture of grammar rules induction and fragments
storing: how to perform the parsing phase, if any?
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TRACX2 (Mareschal e French 2017)

LHSt+1 = (1− tanh(α∆t)×
Hiddenst + tanh(α∆t)× RHSt

Overtime, items that are experienced together become bound to
each other and form a chunk. At first it can be a weak, decomposable
chunk, and later develop into a more self-standing unit.

Both classes of behaviours (i.e., statistical or memory-based) can
emerge from a single mechanism: sequence processing emerges
from the application of fairly ubiquitous associative mechanisms,
coupled with graded top-down re-entrant processing.
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Next questions

1. What do (charachter-based) RNNs encode in terms of linguistic
structure?

2. Some attempts with SNNs:
2.1 Can we achieve similar results?
2.2 What do they encode in terms of linguistic structure?

3. Is there any specific difference in the ability to capture partially
filled or non-adjacent constructions?
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