Recurrent Babbling:

evaluating the acquisition of grammar from limited input data

Ludovica Pannitto, Aurélie Herbelot November 19-20 2020 @ CoNLL

CIMeC - University of Trento

A popular question, relating to **productivity** and **compositionality**¹. We propose that the evaluation of RNN grammars should be widened to include:

- $\cdot\,$ the effect of the type of input data fed to the network
- the **theoretical paradigm** used to analyse its performance

¹"Linguistic generalization and compositionality in modern artificial neural networks" (Baroni 2020)

• vanilla **char-LSTM** trained on a limited amount of **child-directed language**: CHILDES, subtitles (PG) and Simple English Wikipedia

- vanilla char-LSTM trained on a limited amount of child-directed language: CHILDES, subtitles (PG) and Simple English Wikipedia
- introduce a methodology to evaluate the distribution of grammatical items, focusing on the network's generated output
 its babbling

- vanilla **char-LSTM** trained on a limited amount of **child-directed language**: CHILDES, subtitles (PG) and Simple English Wikipedia
- introduce a methodology to evaluate the distribution of grammatical items, focusing on the network's generated output
 its babbling
- explore the **interaction** between meaning representations and the abstraction abilities of the network

- vanilla char-LSTM trained on a limited amount of child-directed language: CHILDES, subtitles (PG) and Simple English Wikipedia
- introduce a methodology to evaluate the distribution of grammatical items, focusing on the network's generated output
 its babbling
- explore the **interaction** between meaning representations and the abstraction abilities of the network

The study is conducted on English.

$$C \times I \xrightarrow{a} \Lambda$$
 (1)

$$C \times I \xrightarrow{a} \Lambda$$
 (1)

All aspects of the equation are of paramount importance in linguistic discussion:

complexity of the learning mechanism *C* - LSTMs can be seen as domain-general attention and memory mechanisms, without any explicitly hard-coded grammatical knowledge.

$$C \times I \xrightarrow{a} \Lambda$$
 (1)

All aspects of the equation are of paramount importance in linguistic discussion:

complexity of the learning mechanism *C* - LSTMs can be seen as domain-general attention and memory mechanisms, without any explicitly hard-coded grammatical knowledge.

quality and quantity of the stimuli *I* - stimuli differ in quantity and quality

$$C \times I \xrightarrow{a} \Lambda$$
 (1)

All aspects of the equation are of paramount importance in linguistic discussion:

complexity of the learning mechanism *C* - LSTMs can be seen as domain-general attention and memory mechanisms, without any explicitly hard-coded grammatical knowledge.

quality and quantity of the stimuli *I* - stimuli differ in quantity and quality

 $language \,\Lambda\,$ - status of lexicon and syntax

We choose a representation which makes the least possible assumptions on the acquisition process and on the content of the generated language, and is at the same time **flexible** and **computationally tractable**.

³Constructions at work: The nature of generalization in language (Goldberg 2006)

²"Catenae: Introducing a novel unit of syntactic analysis" (Osborne, Putnam, and Groß 2012)

We choose a representation which makes the least possible assumptions on the acquisition process and on the content of the generated language, and is at the same time **flexible** and **computationally tractable**.

*Catenae*², are characterized as fundamental **meaning-bearing units**, in line with the theoretical tenets of constructionist theories³, thus being ideal candidates for populating our lexicon (or *Constructicon*).

²"Catenae: Introducing a novel unit of syntactic analysis" (Osborne, Putnam, and Groß 2012)

³Constructions at work: The nature of generalization in language (Goldberg 2006)

Definition of Catena:

"a word, or a combination of words which is continuous with respect to dominance"

Catenae

Definition of Catena:

"a word, or a combination of words which is continuous with respect to dominance"

Figure 1: Dependency representation for the sentence: *Mary had a little lamb*

- Mary had lamb
- had a lamb
- little lamb
- Mary had NOUN
- nsubj VERB dobj

Catenae

Definition of Catena:

"a word, or a combination of words which is continuous with respect to dominance"

Figure 1: Dependency representation for the sentence: *Mary had a little lamb*

- Mary had lamb
- had a lamb
- little lamb
- Mary had NOUN
- nsubj VERB dobj

The number and composition of *catenae* depends on **how elements are arranged** in the structure of the dependency tree.

Q1: To what extent is the network able to generate **new** language?

• We expect the network to reproduce the **statistical regularities** of the input, we further investigate what kind of regularities are acquired and how do the language models differ.

Q1: To what extent is the network able to generate **new** language?

- We expect the network to reproduce the **statistical regularities** of the input, we further investigate what kind of regularities are acquired and how do the language models differ.
- **Q2:** On what conditions is the network able to generalize its *grammatical* knowledge?
 - We can state that the network has learned some grammar once it is able to use an acquired pattern in a **productive** and **creative** way.
 - We expect this generalization ability to evolve during training and the **distributional properties** of patterns to be in relation with the grammatical abilities of the network at various stages of learning.

Q1: To what extent is the network able to generate **new** language?

- We expect the network to reproduce the **statistical regularities** of the input, we further investigate what kind of regularities are acquired and how do the language models differ.
- **Q2:** On what conditions is the network able to generalize its *grammatical* knowledge?
 - We can state that the network has learned some grammar once it is able to use an acquired pattern in a **productive** and **creative** way.
 - We expect this generalization ability to evolve during training and the **distributional properties** of patterns to be in relation with the grammatical abilities of the network at various stages of learning.

Pipeline

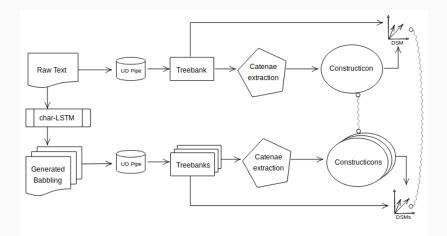


Figure 2: A summary of the work pipeline

Catenae extraction

catena	frequency	mi	
largest mi			
@nsubj @root	294.59K	633.93K	
_DET _NOUN	189.97K	552.32K	
_VERB @obj	190.72K	520.82K	
_PRON _VERB	271.44K	503.17K	
@nsubj _AUX @root	129.60K	478.86K	
smallest mi			
_PRON @nsubj	17.50K	-35.54K	
@root @nsubj	27.61K	-34.89K	
@nsubj _PRON	11.63K	-30.47K	
_VERB @nsubj	12.79K	-26.82K	
_AUX _PRON	15.75K	-26.67K	

Table 1: Examples of *catenae* extracted from CHILDES. Largest and smallest mutual information are reported, in top and bottom tier of the table respectively.

Part of Speech are prefixed by "_" and syntactic relations are prefixed by "@"

• For each corpus (Input I), we selected the best hyperparameters through Bayesian Optimization and built a language model (Best Model BM)

- For each corpus (Input I), we selected the best hyperparameters through Bayesian Optimization and built a language model (Best Model BM)
- We trained again the LSTM with the found hyperparameters, and saved a model every 5 epochs of training (5, 10, ...45)

- For each corpus (Input I), we selected the best hyperparameters through Bayesian Optimization and built a language model (Best Model BM)
- We trained again the LSTM with the found hyperparameters, and saved a model every 5 epochs of training (5, 10, ...45)
- We generated new text from each model, obtaining *babblings* of a size comparable to the input I

- For each corpus (Input I), we selected the best hyperparameters through Bayesian Optimization and built a language model (Best Model BM)
- We trained again the LSTM with the found hyperparameters, and saved a model every 5 epochs of training (5, 10, ...45)
- We generated new text from each model, obtaining *babblings* of a size comparable to the input I
- We processed the input and each *babbling* and extracted *catenae* from them

- For each corpus (Input I), we selected the best hyperparameters through Bayesian Optimization and built a language model (Best Model BM)
- We trained again the LSTM with the found hyperparameters, and saved a model every 5 epochs of training (5, 10, ... 45)
- We generated new text from each model, obtaining *babblings* of a size comparable to the input I
- We processed the input and each *babbling* and extracted *catenae* from them

We end up with sets of *catenae* for **the input**, the **best model**, each **babbling stage**.

We evaluated **Spearman** ρ among the top 10K *catenae* extracted from the input and from each *babbling* stage produced by the LSTM.

We evaluated **Spearman** ρ among the top 10K *catenae* extracted from the input and from each *babbling* stage produced by the LSTM.

Our analysis shows that the network has acquired statistical **regularities at the level of grammatical patterns**, and is able to use them productively to generate **novel** language fragments that **adhere to the same distribution as the input**.

We evaluated **Spearman** ρ among the top 10K *catenae* extracted from the input and from each *babbling* stage produced by the LSTM.

Our analysis shows that the network has acquired statistical **regularities at the level of grammatical patterns**, and is able to use them productively to generate **novel** language fragments that **adhere to the same distribution as the input**.

Catenae extracted from babblings almost perfectly correlate with those extracted from the same input, but correlation values are quite **loose for out-of-domain pairs**.

Q1: What do ANNs approximate?

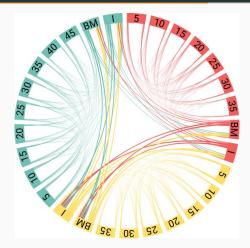


Figure 3: The thickness of the connections is **inversely** proportional to correlation. OpenSubtitles is shown in green on the left of the plot, CHILDES in red in the top right and Simple Wikipedia in yellow at the bottom.

The case of [SBJ V OBJ OBJ2] ⁴

The meaning of the ditransitive pattern emerges from its strong association with *give* in child-directed speech: part of the meaning of *give* remains attached to the construction.

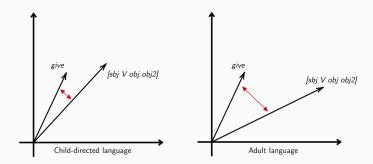


Figure 4: The network is supposed to capture stereotypical instances at early stages of learning and the productivity of the pattern will increase during training

• We restrict to *catenae* from CHILDES composed by 2 or 3 elements

- We restrict to *catenae* from CHILDES composed by 2 or 3 elements
- We built distributional vector space models for the input and each babbling stage, using the selected *catenae* both as targets and as contexts: two *catenae* are considered to co-occur if they are present in the same sentence

- We restrict to *catenae* from CHILDES composed by 2 or 3 elements
- We built distributional vector space models for the input and each babbling stage, using the selected *catenae* both as targets and as contexts: two *catenae* are considered to co-occur if they are present in the same sentence
- We extracted pairs of *catenae* at different level of abstraction: i.e., (*the dog*, _DET *dog*), (*the dog*, *the* _NOUN), (*the dog*, _DET _NOUN), (_DET *dog*, _DET _NOUN) are all legitimate pairs for our analysis

- We restrict to *catenae* from CHILDES composed by 2 or 3 elements
- We built distributional vector space models for the input and each babbling stage, using the selected *catenae* both as targets and as contexts: two *catenae* are considered to co-occur if they are present in the same sentence
- We extracted pairs of *catenae* at different level of abstraction: i.e., (*the dog*, _DET *dog*), (*the dog*, *the* _NOUN), (*the dog*, _DET _NOUN), (_DET *dog*, _DET _NOUN) are all legitimate pairs for our analysis
- For each pair of *catenae*, we evaluated the **difference in cosine similarity** between the model obtained from the first and last snapshot from training, and compared it to their similarity in the DSM obtained from the input.

- We restrict to *catenae* from CHILDES composed by 2 or 3 elements
- We built distributional vector space models for the input and each babbling stage, using the selected *catenae* both as targets and as contexts: two *catenae* are considered to co-occur if they are present in the same sentence
- We extracted pairs of *catenae* at different level of abstraction: i.e., (*the dog*, _DET *dog*), (*the dog*, *the* _NOUN), (*the dog*, _DET _NOUN), (_DET *dog*, _DET _NOUN) are all legitimate pairs for our analysis
- For each pair of *catenae*, we evaluated the **difference in cosine similarity** between the model obtained from the first and last snapshot from training, and compared it to their similarity in the DSM obtained from the input.

Given pairs (cat_1, cat_2) with cat_1 being a less abstract instance of cat_2 , our hypothesis is that *catenae* (i.e., cat_2) that underwent the highest shifts during training were those showing **intermediate levels of similarities in the input distributional space**.

Given pairs (cat_1, cat_2) with cat_1 being a less abstract instance of cat_2 , our hypothesis is that *catenae* (i.e., cat_2) that underwent the highest shifts during training were those showing **intermediate levels of similarities in the input distributional space**.

- pairs with very **high input similarity** are unlikely to exhibit abstraction: the *catena* that is part of the *Constructicon* is the least abstract one, and there is **no need** for the more abstract category
- low similarity pairs, on the other hand, may simply contain unrelated catenae

cat ₁	cat ₂	input	5	10	 30	35	shift
a minute	a _NOUN	0.28	0.71	0.51	 0.37	0.34	0.37
a minute	a @root	0.13	0.49	0.37	 0.22	0.20	0.30
you _VERB it	_PRON @root @expl	0.10	0.46	0.28	 0.17	0.21	0.25
you _VERB you	you _VERB @iobj	0.28	0.68	0.56	 0.42	0.43	0.25
we can _VERB	_PRON can @root	0.51	0.79	0.74	 0.61	0.57	0.22

Table 2: Pairs of *catenae* (*cat*₁, *cat*₂), their cosine similarity in the space obtained from CHILDES and in the spaces obtained from intermediate *babbling* stages.

The last column shows the difference between cosine similarity at epoch 5 and cosine similarity at epoch 35.

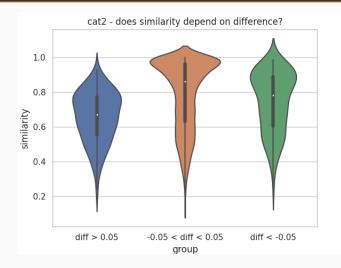


Figure 5: Distribution of average cosine similarities for the three groups of *cat*₂, showing low, intermediate and high average shifts respectively.

ANNs approximate the **distribution of constructions** at a quite refined level, even when trained over a bare 3M words from the CHILDES corpus.

 ⁵"Distributional semantics in linguistic and cognitive research" (Lenci 2008)
⁶Explain me this: Creativity, competition, and the partial productivity of constructions (Goldberg 2019)

ANNs approximate the **distribution of constructions** at a quite refined level, even when trained over a bare 3M words from the CHILDES corpus.

We can follow paths of abstraction by putting our **grammar formalism** in a vector space.

 ⁵"Distributional semantics in linguistic and cognitive research" (Lenci 2008)
⁶Explain me this: Creativity, competition, and the partial productivity of constructions (Goldberg 2019)

ANNs approximate the **distribution of constructions** at a quite refined level, even when trained over a bare 3M words from the CHILDES corpus.

We can follow paths of abstraction by putting our **grammar formalism** in a vector space.

- no sharp distinction between lexicon and grammar \to different items can therefore be compared, irrespective of their lexical nature
- no assumption about the **stability** of the construction \rightarrow what is relevant for productivity at the earliest stages of learning might become superfluous later on
- $\cdot\;$ all items are form-meaning pairs \rightarrow i.e., constructions
- distributional semantics is used both as a quantitative tool and as a usage-based cognitive hypothesis⁵ \rightarrow in line with the view of constructions as "invitations to form categories"⁶

 ⁵"Distributional semantics in linguistic and cognitive research" (Lenci 2008)
⁶Explain me this: Creativity, competition, and the partial productivity of constructions (Goldberg 2019)

Thank you!